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July 12, 2013 
 
 
 
Chair, Florida Commission on Hurricane Loss Projection Methodology 
c/o Donna Sirmons 
Florida State Board of Administration 
1801 Hermitage Boulevard, Suite 100 
Tallahassee, FL 32308 
 
Dear Commission Chairman: 
 
I am pleased to inform you that the final version of 5.0 of Florida Public Hurricane Loss Model 
is ready for review by the Commission. The FPHLM model has been reviewed by professionals 
having credentials and/or experience in the areas of meteorology, engineering, actuarial science, 
statistics and computer science; for compliance with the Standards, as documented by the expert 
certification forms G1-G7.  
 
Enclosed are 7 bound copies of our submission, which includes the summary statement of 
compliance with the standards, the forms, and the submission checklist.   
 
Please contact me if you have any questions regarding this submission. 
 
Sincerely, 

 
Shahid Hamid, Ph.D., CFA  
Professor of Finance,  and  
Director, Laboratory for Insurance, Economic and Financial Research  
International Hurricane Research Center  
RB 202B, Department of Finance, College of Business 
Florida International University  
Miami, FL 33199  
tel:  305 348 2727   fax: 305 348 4245    
 
Cc: Kevin M. McCarty, Insurance Commissioner 
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Statement of Compliance and Trade Secret Disclosure 
Items 

 
The Florida Public Hurricane Loss Model v5.0 is intended to comply with each Standard of the 
2011 Report of Activities released by the Florida Commission on Hurricane Loss Projection 
Methodology. The required disclosures, forms, and analysis are contained herein. 
 
The source code for the loss model will be available for review by the Professional Team. 
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Model Submission Checklist 
 
 

1. Please indicate by checking below that the foll owing has been include d in your subm ission 
documentation to the Florida Commission on Hurricane Loss Projection Methodology. 
 

Yes No Item

X  1. Letter to the Commission

X 

 a. Refers to the  certification forms and s tates that professionals ha ving credentials 
and/or experience in the areas of meteorology, engineering, actuarial science, 
statistics, and computer science have reviewed the model for compliance with the 
standards 

X  b. States model is ready to be reviewed by the Professional Team 
X  c. Any caveats to the above statements noted with a complete explanation

X 
 2. Summary state ment of co mpliance with each  individual standard and the data and  

analyses required in the disclosures and forms 

X 
 3. General description of any trade secret  information the modeling organization intends 

to present to the Professional Team 
X  4. Model Identification
X  5. Seven (7) Bound Copies (duplexed)
X  6. Link containing: 
X  a. Submission text in PDF format 
X  b. PDF file highlightable and bookmarked by standard, form, and section

X 
 c. Data file names include abbreviated name of m odeling organization, standards 

year, and form name (when applicable) 
X  d. Form S-6 (if required) in ASCII and PDF format
X  e. Forms M-1, M-3, V-2, A-1, A-2, A-3, A-4, A-5, A-7, and A-8 in Excel format
X  7. Table of Contents

X 
 8. Materials consecutively numbered from beginning to end starting with the first page 

(including cover) using a single numbering system  

X 
 9.  All tables, graphs, and o ther non-text items consecutively num bered using whole 

numbers 
X  10. All tables, graphs, and other non-text items specifically listed in Table of Contents 
X  11. All tables, graphs, and other non-text items clearly labeled with abbreviations defined 

X 
 12. All column headings shown and repeated at the top of every subsequent page for forms 

and tables 

X 
 13. Standards, disclosures, and forms in italics, modeling organization responses in non-

italics 
X  14. Graphs accompanied by legends and labels for all elements 
X  15. All units of measurement clearly identified with appropriate units used 

X 
 16. Hard copy of all forms included in a submission document Appendix except 

 Forms V-3, A-6, and S-6  
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2. Explanation of “No” responses indicated above.  (Attach additional pages if needed.) 
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Model 5.0 

  July 12, 2013 

Model Name  Modeler Signature  Date 
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GENERAL STANDARDS 
 
 
G-1 Scope of the Computer Model and Its Implementation 
 

A. The computer model shall project loss costs and probable maximum 
loss levels for residential property insured damage from hurricane 
events. 

 
The Florida Public Hurricane Loss Model estimates loss costs and probable maximum loss levels 
from hurricane events for personal lines and commercial lines of residential property. The losses 
are estimated for building, appurtenant structure, contents, and additional living expense (ALE).  

 
B. The modeling organization shall maintain a documented process to 

assure continual agreement and correct correspondence of databases, 
data files, and computer source code to slides, technical papers, and/or 
modeling organization documents. 

 
The FPHLM group members follow the process specified in the flowchart of Figure 1 in order to 
assure continual agreement and correct correspondence of databases, data files, and computer 
source code to slides, technical papers, and FPHLM documents. 
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Figure 1. Process to assure continual agreement and correct correspondence. 
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Figure 2. Florida Public Hurricane Loss Model domain.  Circles represent the threat zone.  Blue color 

indicates water depth exceeding 656 ft (200 m). 

The time evolution of the stochastic storm tracks and intensity are governed by the following 
equations 
 

twp

tcy

ytcx





)sin(

)cos(/)cos(




 

 
where (x,y) are the longitude and latitude of the storm, ),( c  are the storm speed and heading (in 
conventional mathematical sense), p is central pressure, w is the rate of change in p, and Δt is the 
time step. The time step of the model is currently one hour. The storm speed and direction

),( c are sampled at every 24-hour interval from a probability distribution function (PDF). 
The intensity change after the initial 24 hours of track evolution is sampled every six hours to 
capture the more detailed evolution over the continental shelf (shallow water). From the 24-hour 
change in speed and heading angle, we determine the speed and heading angle at each one-hour 
time step by assuming the storm undergoes a constant acceleration that gives the 24-hour 
sampled change in velocity. For changes in pressure, we first sample from a PDF of relative 
intensity changes, r , for the six-hour period and then determine the corresponding rate of 
pressure change, w. The relative intensity is a function of the climatological sea surface 
temperatures and the upper tropospheric 100 mb temperatures. The PDFs of the changes
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),,( rc  depend on spatial location, as well as the current storm motion and intensity. These 
PDFs are of the form 

),,,()( yxaaAaPDF    
 
where a is either c, θ, or r and are implemented as discrete bins that are represented by multi-
dimensional matrices (arrays), A(l,m,i,j). The indices (i,j) are the storm location bins. The model 
domain (100W to 70W, 15N to 40N) is divided into 0.5-degree boxes. The index m represents 
the bin interval that a falls into. That is, the range of all possible values of a are divided into 
discrete bins, the number of which depends on the variable, and the index m represents the 
particular bin a is in at the current time step. As with a, the range of all possible values of the 
change in a are also discretely binned. Given a set of indices (m,i,j), which represent the current 
storm location and state, the quantity A(l,m,i,j) represents the probability that the change in a, a , 
will fall into the l'th bin. When A is randomly sampled, one of the bins represented by the l 
index, e.g. l', is chosen. The change of a is then assigned the midpoint value of the bin associated 
with l'. A uniform random error term equal to the width of bin l' is added to a , so that a may 
assume any value within the bin l'. 
 
The PDFs described above were generated by parsing the HURDAT database and computing for 
each track the storm motion and relative intensity changes at every 24- and 6-hour interval, 
respectively, and then binning them. Once the counts are tallied, they are then normalized to 
obtain the distribution function. For intensity reports for which pressure is not available, a wind 
pressure relation developed by Landsea et al. (2004) is used. In cases where there is no pressure 
report for a track fix in the historical data but there are two pressure reports within a 24-hour 
period that includes the track fix, the pressures are derived by linear interpolation. Otherwise the 
pressure is derived by using the wind-pressure relation. Extra-tropical systems, lows, waves, and 
depressions are excluded. Intensity changes over land are also excluded from the PDFs. To 
ensure a sufficient density of counts to represent the PDFs for each grid box, counts from nearest 
neighbor boxes, ranging up to 2 to 5 grid units away (both north-south and east-west direction), 
are aggregated. Thus, the effective size of the boxes may range from 1.5 to 5.5 degrees but are 
generally a fixed size for a particular variable. The sizes of the bins were determined by finding a 
compromise between large bin sizes, which ensure a robust number of counts in each bin to 
define the PDF, and small bin sizes, which can better represent the detail of the distribution of 
storm motion characteristics. Detailed examinations of the distributions, as well as sensitivity 
tests, were done. Bin sizes need not be of equal width, and a nonlinear mapping function is used 
to provide unequal-sized bins. For example, most storm motion tends to be persistent, with small 
changes in direction and speed. Thus, to capture this detail, the bins are more fine-grained at 
lower speed and direction changes. 
 
For intensity change PDFs, boxes which are centered over shallow water (defined to be less than 
656 ft deep, see Figure 2) are not aggregated with boxes over deeper waters. Deeper waters may 
have significantly higher ocean heat content, which can lead to more rapid intensification [see, 
for example, Shay et al. (2000); DeMaria et al. (2005); Wada and Usui (2007)]. The depth that 
defines deep and shallow waters is not too critical, as the continental shelf drops rather sharply. 
The 200 m (656 ft) bathymetric contour line appears to distinguish well estimates of regions with 
high and low tropical cyclone heat potential (see http://www.aoml.noaa.gov/phod/cyclone/data/). 
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When gridded long-term analyses of tropical cyclone heat potential, or similar characterization 
of oceanic heat content, become available, we intend to use that data in lieu of bathymetry.  
 
In Figure 3 we show a sample of tracks generated by the stochastic track and intensity model. 
 

 
Figure 3. Examples of simulated hurricane tracks.  Numbers refer to the stochastic track number, and 
colors represent storm intensity based on central pressure.  Dashed lines represent tropical storm 
strength winds, and Cat 1‐5 winds are represented by black, blue, orange, red, and turquoise, 

respectively. 

When a storm is started, the parameters for radius of maximum winds and Holland B are 
computed and appropriate error terms are added as described below. The Holland B term is 
modeled as follows: 

 
1.74425 0.007915	 	0.0000084	 0.005024  
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where Lat is the current latitude (degrees) of the storm center, DelP is the central pressure 
difference (mb), and Rmax is the radius of maximum winds (km). The random error term for the 
Holland B is modeled using a Gaussian distribution with a standard deviation of 0.286.  Figure 4 
shows a comparison between the Willoughby and Rahn (2004) B dataset (see Standard M-2.1) 
and the modeled results (scaled to equal the 116 measured occurrences in the observed dataset). 
The modeled results with the error term have a mean of about 1.38 and are consistent with the 
observed results. The figure indicates excellent agreement between model and observations. 
 

 
Figure 4. Comparison between the modeled and observed Willoughby and Rahn (2004) B dataset. 

 
We developed an Rmax model using a landfall Rmax database, which includes more than 100 
measurements for storms up to 2010. We have opted to model the Rmax at landfall rather than 
the entire basin for a variety of reasons. One is that the distribution of landfall Rmax may be 
different than that over open water. An analysis of the landfall Rmax database and the 1988–
2007 DeMaria extended best track data shows that there appears to be a difference in the 
dependence of Rmax on central pressure (Pmin) between the two datasets (Demuth et al., 2006). 
The landfall dataset provides a larger set of independent measurements, more than 100 storms 
compared to about 31 storms affecting the Florida threat area region in the best track data. Since 
landfall Rmax is most relevant for loss cost estimation and has a larger independent sample size, 
we have chosen to model the landfall dataset. Future studies will examine how the extended best 
track data can be used to supplement the landfall dataset. 
 
We modeled the distribution of Rmax using a gamma distribution. Using an approximate 
maximum likelihood estimation method, we found the estimated parameters for the gamma 
distribution, 44035.5ˆ k and 71464.4ˆ  . With these estimated values, we show a plot of the 
observed and expected distribution in Figure 5.  The Rmax values are binned in 5 sm intervals, 
with the x-axis showing the end value of the interval. 
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Wind Field Model 
 
Once a simulated hurricane moves to within a threshold distance of a Florida ZIP Code, the wind 
field model is turned on. The model is based on the slab boundary layer concept originally 
conceived by Ooyama (1969) and implemented by Shapiro (1983). Similar models based on this 
concept have been developed by Thompson and Cardone (1996), Vickery et al. (1995), and 
Vickery et al. (2000a). The model is initialized by a boundary layer vortex in gradient balance. 
Gradient balance represents a circular flow caused by balance of forces on the flow whereby the 
inward directed pressure gradient force is balanced by outward directed Coriolis and centripetal 
accelerations. The coordinate system translates with the hurricane vortex moving at velocity c. 
The vortex translation is assumed to equal the geostrophic flow associated with the large-scale 
pressure gradient. In cylindrical coordinates that translate with the moving vortex, equations for 
a slab hurricane boundary layer under a prescribed pressure gradient are  

 
2

, 0  

 

	
2

, 0  

 
 
where u and v are the respective radial and tangential wind components relative to the moving 
storm; p is the sea level pressure, which varies with radius (r); f is the Coriolis parameter, which 
varies with latitude; ϕ is the azimuthal coordinate; K is the eddy diffusion coefficient; and F(c,u), 
F(c,v) are frictional drag terms. All terms are assumed to be representative of means through the 
boundary layer. The motion of the vortex is determined by the modeled storm track. The 
symmetric pressure field p(r) is specified by the Holland (1980) pressure profile with the central 
pressure specified according to the intensity modeling in concert with the storm track. The model 
for the Holland B pressure profile and the radius of maximum wind are described above. The 
wind field is solved on a polar grid with a 0.1 R/Rmax resolution. The input Rmax is adjusted to 
remove a bias caused by a tendency of the wind field solution to place Rmax one grid point 
radially outward from the input value.  
 
The marine surface winds from the slab model are adjusted to land surface winds using a surface 
friction model. The FPHLM includes the ability to model losses at the "street level." To 
incorporate this feature, the treatment of land surface friction in the model has been enhanced to 
provide surface winds at high resolution and to take advantage of recent developments in 
hurricane boundary layer theory. The 10-minute winds from the slab model are interpolated to a 
1 km (0.62 sm) fixed grid covering the entire state of Florida at every time step to obtain a wind 
swath for each storm. Surface friction is modeled using an effective roughness model (Axe, 
2004) based on the Source Area Model of Schmidt and Oke (1990) that takes into account 
upstream surface roughness elements. The surface roughness elements are derived from the 
Multi-Resolution Land Characteristics Consortium (MRLC) National Land Classification 
Database (NLCD) 2001 land cover/land use dataset (Homer et al., 2004) and the Statewide 2004 
Florida Water Management District land use classification data (available from the Florida 
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Department of Environmental Protection). The effective roughness elements are computed for 
eight incoming wind directions on a grid of approximately 90 m (295 ft) resolution covering the 
entire state of Florida. 
 
For modeling losses at the ZIP Code level, the effective roughness elements are aggregated over 
the ZIP Code by a weighted summation of the roughness elements according to population 
density determined from census block data.  The methodology for converting marine winds to 
actual terrain winds is based on Powell et al. (2003) and Vickery et al. (2009). This method 
assumes that wind at the top of the marine boundary layer is similar to the wind at the top of the 
boundary layer over land, and a modified log-wind profile is then used to determine the wind 
near the land surface. The winds are computed at various height levels that are needed for the 
vulnerability functions for residential and commercial residential structures. 
 
The effect of the sea-land transition of hurricane winds coming onshore is modeled by modifying 
the terrain conversion methodology of Vickery et al. (2009). This modification is based on the 
concept of an internal boundary layer (IBL) (Arya, 1988) that develops as wind transitions from 
smooth to rough surface conditions. Winds above the IBL are assumed to be in equilibrium with 
marine roughness. In the equilibrium layer (EL), defined to be one-tenth of the IBL, the winds 
are assumed to be in equilibrium with the local effective roughness. Between the EL and IBL the 
winds are assumed to be in equilibrium with vertically varying step-wise changes in roughness 
associated with upstream surface conditions. This concept of multiple equilibrium layers is 
similar in philosophy to the method prescribed by the Engineering Sciences Data Unit (ESDU). 
The coastal transition function produces wind transitions that are very close to the ESDU and 
modified ESDU values reported in Vickery et al. (2009). 
 

VULNERABILITY COMPONENT: PERSONAL RESIDENTIAL MODEL 
 
The engineering component performs several tasks: (1) it estimates the physical damage to 
exterior components of typical buildings, including roof cover, roof decking, walls, and 
openings; (2) it assesses the interior and utilities damage and contents damage due to water 
penetration through exterior damage and defects to interior walls, ceiling, doors, etc.; (3) it 
combines the exterior and interior damage to estimate the building and content vulnerabilities; 
(4) it estimates additional living expenses; and (5) it estimates the appurtenant structure 
vulnerability (Pinelli et al., 2003a, 2003b, 2004a, 2004b, 2005a, 2005b, 2006, 2007a, 2007b, 
2008a, 2008b, 2009a, 2010a, 2011a, 2011b; Cope, 2004; Cope et al., 2003a, 2003b, 2004b, 2005; 
Gurley et al., 2003, Torkian at al., 2011).  
 
Exposure Study 
 
Personal residential single-family home buildings (PRB), either site built (Figure 7) or 
manufactured (Figure 8), are categorized into typical generic groups with similar structural 
characteristics, layout, and materials within each group. These buildings can suffer substantial 
external structural damage (in addition to envelope and interior damage), including collapse 
under hurricane winds. The approach to assessing damage for each of these building types is to 
model the building as a whole so that interactions among components can be accounted for. The 
models are intended to represent the majority of the PRB’s in Florida. 
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An extensive survey of the Florida building stock was carried out to develop a manageable 
number of building models that represent the majority of the Florida residential building stock. 
The modelers analyzed several sources of data for building stock information. One source was 
the Florida Hurricane Catastrophe Fund (FHCF) exposure database. Another source was the 
Florida counties’ property tax appraisers’ databases. Although the database contents and format 
vary county to county, many of these databases contain the structural information needed to 
define common structural types. The 52 most populous counties were contacted to acquire their 
tax appraiser database, producing information from 33 counties. These 33 counties account for 
more than 90% of Florida’s population. The residential buildings in each county database were 
divided into single-family residential buildings and mobile homes. 
 
County property tax appraiser (CPTA) databases contain large quantities of building information, 
and it was necessary to extract those characteristics related to the vulnerability of buildings to 
wind. The available building characteristics vary from county to county and include some 
combination of the following: exterior wall material, interior wall material, roof shape, roof 
cover, floor covering, foundation, opening protection, year built, number of stories, area per 
floor, area per unit, and geometry of the building. The parameters important for modeling are 
roof cover, roof shape, exterior wall material, number of stories, year built, and building area. 
For each of these categories, the authors extracted statistical information. The dependency 
between critical building characteristics was also investigated. For example, it was found that 
roof shape and area of the building are strongly dependent on the year built. The survey statistics 
were calculated for different eras to account for the correlation between various factors and year 
built. 
 

 
Figure 7. Typical single‐family homes (Google Earth). 
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Figure 8. Manufactured homes (Google Earth). 

The modelers divided Florida into four regions: North, Central, South, and the Keys. Geography 
and the statistics from the Florida Hurricane Catastrophe Fund (FHCF) provided guidance for 
defining regions that would have a similar building mix. For example, North Florida has 
primarily wood frame houses while South Florida primarily has masonry houses.  Figure 9 
shows the regions. Each county for which data were available is marked with a star and shaded. 
 

 
Figure 9. Regional Classification of Florida with the corresponding sample counties (blue and star). 

Structural types are delineated by a combination of four characteristics: number of stories (either 
one or two), roof cover (either shingle, tile, or metal), roof shape (either gable or hip), and 
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exterior wall material (either concrete blocks or timber). Statistics were computed for each 
structural type in every sampled county. Weighted average techniques were used to extrapolate 
the results to the remaining counties in each region. 
 
Building Models 
 
Site-Built Home Models 
 
In addition to a classification of building by structural types (wood or masonry walls, hip or 
gable roof), it was also necessary to classify the buildings by relative strength to reflect changes 
in construction practice over many years. The vulnerability team has developed strong, medium, 
and weak strength models for each site-built structural type to represent relative quality of 
original construction as well as post-construction mitigation. The weak and medium models have 
additional variants that reflect historical building practices, roof retrofits, and reroofing of 
existing structures as mandated by the newer building standards. The strong model has two 
variants to delineate code requirements that are regionally dependent. One strong variant reflects 
inland and wind-borne debris region (WBDR) construction, and another (stronger) variant 
reflects construction in the high velocity hurricane zone (HVHZ). 
 
The three strength categories are based on the same model framework, in which strength is 
represented by the capacities assigned to the modeled building components. For example, the 
strong models differ from the weak models by stronger assigned capacities for roof-to-wall (r2w) 
and stud to sill connections, garage pressure capacity, cracking capacity of masonry walls, gable 
end walls, decking and shingle capacities. The medium models differ from the weak models by 
increasing the strength of the roof-to-wall connections (toe nails vs. clips), roof decking capacity 
(nailing schedule), and masonry wall strength (un-reinforced vs. reinforced).  
 
Any given strong, medium, or weak model may be altered by additional mitigation or retrofit 
measures individually or in combination. For example, from the base weak model, additional 
models were derived to represent historical building practices and mitigation techniques. The 
modified weak W10 model accounts for the use of tongue-and-groove plank decking in pre-
1960s buildings. These buildings tend to exhibit higher deck strength capacities than the 
buildings with the plywood decking implemented in the base weak model, referred to as W00 
(Shanmugam et al., 2009).  
 
A modified medium model M10 was adopted that reflects the use of oriented strand board (OSB) 
decking with staples in the 1980s and pre-Andrew 1990s. This was considered an adequate 
alternative to nailed plywood at the time. It was, however, weaker in terms of wind resistance 
and was assigned a weaker deck attachment capacity than the standard medium model.  
 
Additionally, retrofitted weak W01 and medium M01 models were derived from the base weak 
and medium models. They represent the case in which a structure has been reroofed and the 
decking re-nailed according to current code requirements. On the basis of the average lifespan of 
a roof, reroofing would be required periodically throughout the structure’s lifetime and would 
result in an increase in the deck attachment capacity and shingle ratings to meet current building 
code requirements. The deck attachment capacities of these models were therefore upgraded to 
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produce the retrofitted weak W01 and medium M01 cases. The roof cover was also upgraded to 
rated shingles.  
 
The base, retrofitted and modified versions of the weak and medium models were developed in 
order to provide a fine model resolution of quality of construction for homes constructed prior to 
1994 and a portion of the homes prior to 2002. Weak and medium models represent 
approximately 80% of the existing single-family residential inventory in Florida, and are 
described in Table 1a.  
 
Two basic variations of the strong model represent construction quality for the remaining 
approximately 20% of the single-family residential inventory. The base strong model, S00, 
represents modern construction in locations inland, as well as the WBDR that is not overlapping 
the HVHZ. The difference in strong models between inland, S00, and WBDR, S00-OP, is due to 
the presence of metal shutters in WBDR.  This base strong model incorporates modern 
requirements for nailing schedules, roof to wall connection products, masonry reinforcing, and 
roof shingle products and installation methods. The second strong model, S01, has upgrades to 
the capacity for roof cover, roof decking and roof to wall connections to reflect additional code 
requirements for HVHZ construction. The strong models are described in Table 1b. 
 
All models may be run without opening protection, with plywood opening protection, or with 
metal panel shutter opening protection installed, with increasing protection respectively. 
 
The distribution of the weak, medium and strong model variations with respect to year built will 
be presented later in Table 6 and in the discussion of the models’ distribution in time. 
 

Table 1a. Weak and Medium Models 
 

 Weak Medium 

 W00 
(base) 

W01 
(retrofitted*) 

W10  
(modified**) 

M00 
(base) 

M01 
(retrofitted*) 

M10 
(modified***)  

Roof to wall Weak Weak Weak Medium Medium Medium 

Stud to sill Weak Weak Weak Medium Medium Medium 

Roof cover Weak Strong Weak  Weak Strong  Weak 

Roof deck Weak Strong Strong Medium Strong Weak  

Wall  Weak Weak Weak Medium  Medium  Medium  

Gable end Weak Weak Weak Weak Weak Weak 

Garage Weak Weak  Weak  Weak  Weak  Weak  

*retrofitted refers to re-roof and re-nailed decking, occurring post-1993 for HVHZ and Monroe, and post-2001 for 
everywhere else. No other retrofits are included. 
**modified weak refers to the base weak model with stronger decking to reflect the use of plank decking 
***modified medium refers to the base medium model with weak decking to reflect the use of staples and/or OSB 
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Table 1b. Strong Models 

 S00 
Strong - inland 

S00-OP 
Strong - WBDR 

 S01 
Strong - HVHZ 

Roof to wall Strong Strong Upgraded Strong 
Stud to sill Strong Strong Strong 
Roof cover Strong Strong Upgraded Strong 
Roof deck Strong Strong Upgraded Strong 
Wall  Strong Strong Strong 
Gable end Strong Strong Strong 
Garage Strong Strong Strong 
Shutters  no shutters  metal metal 

 
 
Manufactured Homes Model 
 
On the basis of the exposure study, it was decided to model four manufactured home (MH) 
types: (1) pre-1994—fully tied down, (2) pre-1994—not tied down, (3) post-1994—Housing and 
Urban Development (HUD) Zone II, and (4) post-1994—HUD Zone III. The partially tied-down 
homes are assumed to have a vulnerability that is an average of the vulnerabilities of fully tied-
down and not tied-down homes. Because little information is available regarding the distribution 
of manufactured home types by size or geometry, it is assumed that all model types are single-
wide manufactured homes. The modeled single-wide manufactured homes are 56 ft x 13 ft, have 
gable roofs, eight windows, a front entrance door, and a sliding-glass back door. 
 
Damage Matrices 
 
Exterior Damage 
 
The model accounts for a number of construction factors that influence the vulnerability of 
single-family dwellings, including classification (site-built or manufactured home), size, roof 
shape, location, age, and a variety of construction details and mitigation measures. The effects of 
mitigation measures such as code revisions and post-construction upgrades to the wind resistance 
of homes (e.g., new roof cover on an older home, shutter protection against debris impact, braced 
garage door, re-nailed roof decking, etc.) are accounted for both individually and in combination 
by selecting the desired statistical descriptors of the capacities of the various components. Thus 
the comparative vulnerability of older homes as built, older homes with combinations of 
mitigation measures, and homes constructed to the new code requirements can be estimated. 
 
The vulnerability model uses a component-based Monte Carlo simulation to determine the 
external vulnerability at various wind speeds for the different building models. The approach 
accounts for the resistance capacity of the various building components, the wind-load effects 
from different directions, and associated uncertainties of capacity and loads to predict exterior 
damage at various wind speeds. The simulation relates probabilistic strength capacities of 
building components to a series of three-second peak gust wind speeds through a detailed wind 
and structural engineering analysis that includes effects of wind-borne debris. Damage to the 
structure occurs when the loads from wind or flying debris are greater than the components’ 
capacity to resist them. The vulnerability of a structure at various wind speeds is estimated by 
quantifying the amount of damage to the modeled components. Damage to a given component 



FPHLM V5.0 2013 

32 
 

may influence the loads on other components, e.g., a change in roof loading from internal 
pressurization due to a damaged opening. These influences are accounted for through an iterative 
process of loading, damage assessment, load redistribution, and reloading until convergence is 
reached. The flow chart in Figure 10 summarizes the Monte Carlo procedure used to predict the 
external damage. The random variables include wind speed, pressure coefficients, debris impact, 
and the resistances of the building components (roof cover, roof sheathing, openings, walls, 
connections). 
 
The damage estimations are affected by uncertainties regarding the behavior and strength of the 
various components and the load effects produced by hurricane winds. Field and laboratory data 
that better define these uncertain behaviors can thus be directly included in the model by refining 
the statistical descriptors of the capacities, load paths, and applied wind loads. 
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Figure 10. Monte Carlo simulation procedure to predict external damage. 
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The output of the Monte Carlo simulation model is an estimate of physical damage to structural 
and exterior components of the modeled home. The results are presented in the form of a damage 
matrix, where each row presents the output of an individual simulation. The 15 rows of this 
matrix (Table 2) correspond to damage to 14 components, and the internal pressure of the 
building upon completion of that simulation (column 11). A separate matrix is created for each 
peak three-second gust wind speed between 50 and 250 mph in 5 mph increments (50, 55, …, 
250 mph) and for each wind angle between 0 and 315 degrees in 45-degree increments. A 
description of the values in each of the nine columns of the manufactured home damage matrix is 
given in Table 3.  Note that internal pressure is not included as an output from the manufactured 
home model (Table 3).  Changes in internal pressure due to breach are accounted for and utilized 
to quantify damage, but the final internal pressure value is not needed as an output. 
 
 

Table 2. Description of values given in the damage matrices for site-built homes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Col# Description of Value 
Min 
Value Max Value 

1 % failed roof sheathing 0 100 
2 % failed roof cover 0 100 
3 % failed roof to wall connections 0 100 
4 # of failed walls 0 4 
5 # of failed windows 0 15 
6 # of failed doors 0 2 
7 y or n failed garage 0 = no 1 = yes 
8 y or n envelope breached 0 = no 1 = yes 
9 # of windows broken by debris impact 0 15 
10 % of gable end panels broken 0 100 

11 internal pressure 0 
Not 
defined  

12 % failed wall panels – front 0 100 
13 % failed wall panels – back 0 100 
14 % failed wall panels – side 0 100 
15 % failed wall panels – side 0 100 
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Table 3. Description of values given in the damage matrices for manufactured homes. 

Col # Description of Value 
Min 
Value Max Value

1 # of failed windows (out of 8 for single wide) 0 8 
2 # of broken windows that were broken by impact load case 0 8 
3 # of failed doors (front and back = 2 total) 0 2 
4 % of roof sheathing failed 0 100 
5 % of roof cover failed 0 100 
6 % of wall sheathing failed 0 100 
7 # of failed roof to wall connections (out of 58) 0 58 

8 
sliding (0 = no sliding, 1 = minor sliding, 2 = major 
sliding) 0 2 

9 overturning (0 = not overturned, 1 = overturned) 0 1 
 
 
Interior and Utilities Damage 
 
Once the external damage has been calculated for a given Monte Carlo simulation, the internal, 
utilities, and contents damages to the building are then extrapolated from the external damage. 
For the interior and utilities of a home, there is no explicit means by which to compute damage. 
Damage to the interior and utilities occurs when the building envelope is breached, allowing 
wind and rain to enter. Damage to roof sheathing, roof cover, walls, windows, doors, and gable 
ends present the greatest opportunities for interior damage. For manufactured homes, sliding and 
overturning are additional factors. 
 
Interior damage equations were derived as functions of each of the external components. These 
equations are developed primarily on the basis of experience and engineering judgment. 
Observations of homes damaged during the 2004 hurricane season helped to validate these 
predictions. The interior equations are derived by estimating typical percentages of damage to 
each interior component, given a percentage of damage to an external component. The interior 
damage as a function of each modeled component is the same for both site-built and 
manufactured homes.  
 
To model the uncertainties inherent in the determination of interior damage, the output of the 
equations is multiplied by a random factor with mean unity. The factor is assumed to have a 
Weibull distribution with tail length parameter 2. For the factor to have mean unity, the scale 
parameter must be 0.7854, resulting in a variance of 0.2732. This choice of Weibull parameters 
is assumed to be reasonable, and a sensitivity study was done to confirm that assumption and to 
show that it has no effect on the mean vulnerability, as expected. 
 
To compute the total interior damage for each model simulation, all values in the damage 
matrices are converted to percentages of component damage. The interior equations are applied 
to each component, one at a time. The total interior damage for each simulation is the maximum 
interior damage value produced by these equations. The maximum value is used instead of a 
summation to avoid the possibility of counting the same interior damage more than once. That is, 
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once water intrusion from one breach of the envelope has thoroughly damaged any part of the 
interior, further water intrusion from other sources will not increase the cost of the damage of 
that part. 
 
Utilities damage is estimated on the basis of interior damage. A coefficient is defined for each 
utility (electrical, plumbing, and mechanical), which multiplies the interior equations defined for 
each component. As in the case of interior damage, the maximum value is retained as the total 
damage. The utilities coefficients are based on engineering judgment. In both site-built and 
manufactured homes, it is assumed that electrical damage occurs at half the rate of interior 
damage (0.5). Plumbing damage is set to 0.35 of interior damage for site-built homes and for 
manufactured homes. Mechanical damage is set to 0.4 of interior damage for site-built homes 
and for manufactured homes.  
 
Contents Damage 
 
As with the interior and utilities, the contents of the home are not modeled by Monte Carlo 
simulations. Contents damage is assumed to be a function of the interior damage caused by each 
failed component that causes a breach of the building envelope. The functions are based on 
engineering judgment and are validated using actual claims data.  
 
Additional Living Expenses 
 
Additional Living Expense (ALE) coverage covers only expenses actually paid by the insured. 
This coverage pays only the increase in living expenses that results directly from the covered 
damage and having to live away from the insured location. The value of an ALE claim is 
dependent on the time required to repair a damaged home and the surrounding utilities and 
infrastructure.  
 
The equations and methods used for manufactured and residential homes are identical. However, 
it seems logical to reduce the manufactured home ALE predictions because typically a faster 
repair or replacement time may be expected for these home types. Therefore, an ALE multiplier 
factor of 0.75 was introduced into the manufactured home model.  
 
Vulnerability Matrices 
 
The estimates of total building damage result in the formulation of vulnerability matrices for 
each modeled building type. The flowchart in Figure 11 summarizes the procedure used to 
convert the Monte Carlo simulations of physical external damage into a vulnerability matrix. 
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Figure 11. Procedure to create vulnerability matrix. 
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For each Monte Carlo model, 5000 simulations are performed for each of 8 different wind angles 
and 41 different wind speeds. This is 5000 x 8 x 41 = 1,640,000 simulations of external damage 
per model, which are then expanded to cover interior, utilities, and contents damage, plus ALE, 
as explained above. 
 
Knowing the components of a home and the typical square footage, the cost of repairing all 
damaged components is estimated using cost estimation resources [e.g., RSMeans Residential 
Cost Data and Construction Estimating Institute (Langedyk & Ticola, 2002)] and expert advice. 
These resources provide cost data from actual jobs based on estimates and represent typical 
conditions. Unmodeled nonstructural interior, plumbing, mechanical, and electrical utilities make 
up a significant portion of repair costs for a home.  
 
Replacement cost ratios provide a link between modeled physical damage and the corresponding 
monetary losses. They can be defined as the cost of replacing a damaged component or assembly 
of a home divided by the cost of constructing a completely new home of the same type. The sum 
of the replacement cost ratios for all the components of a home is greater than 100% because the 
replacement costs include the additional costs of removal, repair, and remodeling.  
 
An explicit procedure is used to convert physical damage of the modeled components to 
monetary damage. Since the replacement ratio of each modeled component is known, the 
monetary damage resulting from damage to a component expressed as a percentage of the 
home’s value can be obtained by multiplying the damaged percentage of the component by the 
component’s replacement ratio. For example, if 30% of the roof cover is damaged, and for this 
particular home type the replacement ratio of roof cover is 14%, the value of the home lost as a 
result of the damaged roof cover would be 0.30 x 0.14 = 4.2%. If the value of this home were 
$150,000, the cost to replace 30% of the roof would be $150,000 x 0.042 = $6,300. In addition, 
the costs will be adjusted as necessary because of certain requirements of the Florida building 
code that might result in an increase of the repair costs (for example, the code might require 
replacement of the entire roof if 30% or more is damaged). 
 
After the simulation results have been translated into damage ratios, they are then transformed 
into vulnerability matrices. A total of 4356 matrices for site-built homes is created for different 
combinations of wall type (frame or masonry), region (North, Central, or South), subregion (high 
wind velocity zone, wind-borne debris region, or other), roof shape (gable or hip), roof cover 
(tile or shingle), window protection (shuttered or not shuttered), number of stories (one or two), 
and strength (base weak W00, modified weak W10, retrofitted weak W01, base medium M00, 
modified medium M10, retrofitted medium M01, or strong S). 
 
The cells of a vulnerability matrix for a particular structural type represent the probability of a 
given damage ratio occurring at a given wind speed. The columns of the matrix represent three-
second gust wind speeds at 10 m, from 50 mph to 250 mph in 5 mph bands. The rows of the 
matrix correspond to damage ratios (DR) in 2% increments up to 20%, and then in 4% 
increments up to 100%. If a damage ratio is DR= 15.3%, it is assigned to the interval 
14%<DR<16% with a midpoint DR=15%. After all the simulations have been counted, the total 
number of instances in each damage interval is divided by the total number of simulations per 
wind speed to determine the percentage of simulations at any damage state occurring at each 
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speed. These percentages are the conditional probabilities of occurrence of a level of damage, 
given a certain wind speed. A partial example of a vulnerability matrix is shown in Table 4. 
 

Table 4. Partial example of vulnerability matrix. 

Damage\Wind Speed (mph) 47.5 to 52.5 52.5 to 57.5 57.5 to 62.5 62.5 to 67.5 67.5 to 72.5 

0% to 2% 1 0.99238 0.91788 0.77312 0.61025 

2% to 4% 0 0.00725 0.0806 0.21937 0.36138 

4% to 6% 0 0.00037 0.001395 0.007135 0.0235 

6% to 8% 0 0 0.000125 0.000375 0.0025 

8% to 10% 0 0 0 0 0.000375 

10% to 12% 0 0 0 0 0.000375 

12% to 14% 0 0 0 0 0.000625 

14% to 16% 0 0 0 0 0.0005 

16% to 18% 0 0 0 0 0.000125 

18% to 20% 0 0 0 0 0.00012 

20% to 24% 0 0 0 0 0.00025 

24% to 28% 0 0 0 0 0 

 
One important plot derived from the vulnerability matrix is the vulnerability curve. The 
vulnerability curve for any structural type is the plot of the mean damage ratio vs. wind speed. 
The model can also generate fragility curves (the probability of exceedance of any given damage 
level as a function of the wind speed) for each vulnerability matrix, although these curves are not 
used in the model.  
 
Similar vulnerability matrices and vulnerability curves are developed for contents and ALE, one 
for each structural type. The whole process is also applied to manufactured homes.  
 
Weighted Vulnerability Matrices 
 
Building vulnerability matrices were created for every combination of region (Keys, South, 
Central, and North), construction type (masonry, wood, or other), roof shape (gable or hip), roof 
cover (tile or shingle or metal), number of stories (one or two), shutters (with or without), and 
subregion (inland, wind-borne debris region, or high velocity hurricane zone). However, in 
general, there is little information available in an insurance portfolio file regarding the structural 
characteristics and the wind resistance of the insured property. Instead, insurance companies rely 
on the Insurance Services Office’s (ISO) fire resistance classification. Portfolio files have 
information on ZIP Code and year built. The ISO classification is used to determine if the home 
is constructed of masonry, timber, or other. The ZIP Code is used to define the region and 
subregion. The year the home was built is used to assist in defining the strength to be assigned to 
the home.  
 
Region, subregion, construction type, and year built are determined from the insurance files. This 
leaves the roof shape, roof cover, and shutter options undefined. From the exposure study of 33 
Florida counties, the distribution of number of stories, roof shapes, and roof cover by age per 
region can be extrapolated. For each age group, we define a weighted matrix for each 
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construction type in each county belonging to a region and subregion. The weighted matrices are 
the sum of the corresponding vulnerability model matrices weighted on the basis of their 
statistical distribution. For example, consider a masonry home built in the wind-borne debris 
region of central Florida in 1990. The exposure study indicates that 66% of such homes have 
gable roofs, 85% have shingle roof cover, and 20% have window shutters. Weight factors can be 
computed for each model matrix based on these statistics. For example, the Central Florida, 
gable, tile, no shutters, masonry matrix would have a weight factor of 66% (masonry percent 
gable) x 15% (percent tile) x 80% (percent without shutters) = 7.9%; this is the percentage of that 
home type that would be expected in this region, for that year built. Each model matrix is 
multiplied by its weight factor, and the results are summed. The final result is a weighted matrix 
that is a combination of all the model matrices and can be applied to an insurance policy if only 
the ZIP Code, year built, and ISO classification are known. As a result, for each county in each 
subregion (inland, wind-borne debris region, and high velocity hurricane zone) of each region 
(Keys, South, Central, and North), there will be sets of weighted matrices (masonry, wood, and 
others) for weak, medium, and strong structures.  
 
Age-Weighted Matrices 
 
The year built or year of last upgrade of a structure in a portfolio might not be available when 
performing a portfolio analysis to estimate hurricane losses in a certain region. In that case, it 
becomes necessary to assume a certain distribution of ages in the region to develop an average 
vulnerability by combining weak, medium, and strong.  
 
The tax appraisers’ databases include effective year of construction and thus provide guidance as 
to how to weigh the combined weak, medium, and strong model results when year built 
information is not available in other portfolio files. In each region, the data were analyzed to 
provide the age statistics. These statistics were used to weigh the average of weak, medium, and 
strong vulnerabilities in each region. The results are shown in Figure 12 for the wind-borne 
debris zone in the Central region. The different weighted vulnerability curves are shown for the 
weak, medium, and strong models, superimposed with the age-weighted vulnerability curve. 
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In the few cases in which a policy in a portfolio has a combination of parameters that would 
result in a vulnerability matrix different than any of the existing matrices in the library of the 
FPHLM, the program assigns to the policy a so-called “other” weighted matrix (see Table 5 
below).  The “other” matrices are an average of timber and masonry matrices. 
 
 
 
Table 5. Assignment of vulnerability matrix depending on data availability in insurance portfolios. 

Data in 
Insurance 
Portfolio 

Year 
Built 

Exterior 
Wall 

No. of 
Story 

Roof 
Shape 

Roof 
Cover 

Opening 
Protecti
on 

Vulnerability Matrix 

Case 1 known  known known known known known Use unweighted 
vulnerability matrix  

Case 2 known known or 
unknown 

Any combination of the four 
parameters is either unknown or other 

use weighted matrix  
or 
replace all unknown and 
others randomly based on 
stats and use unweighted 
vulnerability matrix 

Case 3 known other Any combination of the four 
parameters is either unknown or other 

use the “other” weighted 
matrix  

Case 4 unknown known Any combination of the four 
parameters is either unknown or other 

use age weighted matrix  
or 
replace all unknown and 
others randomly based on 
stats and use unweighted 
vulnerability matrix  

Case 5 unknown other Any combination of the four 
parameters is either unknown or other 

Use age weighted 
matrices for “other” 

 
 
Models’ Distribution in Time 
 
Over time the codes used for construction in Florida have evolved to reduce wind damage 
vulnerability. The weak W00, modified weak W10, retrofitted weak W01, medium M00, 
modified medium M10, retrofitted medium M01, and strong models represent this evolution in 
time of relative quality of construction in Florida. Each model is representative of the prevalent 
building type for a certain historical period. However, the assignment of a building strength (its 
relative vulnerability to wind damage) based on its year of construction is not a straightforward 
task. The appropriate relationship between age and strength is a function of location within 
Florida, code in place in that location, and code enforcement policy (also regional). It is therefore 
important to define the cut-off date between the different periods since the overall aggregate 
losses in any region are determined as a mixture of homes of various strengths (ages). The cut-
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off dates are based on both the evolution of the building code and the prevailing local 
builder/community code enforcement standards in each era.  
 
Given the importance of these issues in the estimation of wind damage vulnerability, a brief 
history of codes and enforcement is presented next. 
 
Construction practice in South Florida recognized the importance of truss-to-wall connection as 
early as the 1950s, when it became common to use clips rather than toe nails. The clips were not 
as strong as modern straps, but they were an improvement over nails. North Florida has fewer 
historical occurrences of severe hurricane impact, resulting in weaker construction in general 
than in the south within the same given era. The use of clips became relatively standard 
statewide by the mid-1980s. The use of improved shingle products and resistant garage doors 
became more common after Hurricane Andrew.  
 
The issue of code enforcement has also evolved over time. The State of Florida took an active 
role in uniform enforcement only recently. Prior to Hurricane Andrew, a given county may have 
built to standards that were worse than or exceeded the code in place at the time. Following 
consultation with building code development experts, which included the director of the Miami-
Dade building department, the president of an engineering consulting firm and consultant to the 
South Florida Building Code, the consensus was that the issue was not only the contents of the 
code, but also enforcement of the code.  
 
In an attempt to standardize construction, some cities and counties in Florida adopted building 
codes, some of the earliest being Clearwater, which adopted a draft of the Standard Building 
Code (SBC) in 1945 (Cox, 1962); Daytona Beach in 1946 (The Morning Journal, 1946); 
Bradenton and Manatee counties by 1950; Sarasota County in 1956 (Sarasota Journal, 1956), and 
Riviera Beach in Palm Beach County in 1957 (The Palm Beach Post, 1957). Miami-Dade and 
Broward counties adopted the South Florida Building Code (SFBC) in 1957 and 1961, 
respectively. The SFBC, one of the most stringent codes in the United States, had some wind 
provisions since its inception. SBC made wind-load provisions mandatory in 1986. Modern wind 
design started in 1972 and improved considerably for low-rise construction in 1982 (Mehta, 
2010). In addition, Florida’s construction boom of the 1970s led the state authorities to promote 
a statewide uniformity of building standards. The first attempt was Chapter 553, “Building 
Construction Standards,” of the Florida Statutes (F.S.), which was enacted in 1974 and required 
all counties to adopt a code by January 1st, 1975. The statute selected four allowable minimum 
codes as the pool from which jurisdictions needed to adopt their official building codes, namely: 
(1) SBC (Southern Building Code Congress International, 1975), (2) the SFBC (South Florida 
Building Code, 1957), (3) the One and Two Family Dwelling Code, (CABO) (ICC, 1992) and 
(4) the EPCOT code (enforced in Walt Disney World and based on the SBC, SFBC, and 
Uniform Building Code) (Reedy Creek Improvement District, 2002). However, the responsibility 
for the administration and enforcement was left to the discretion of 400 local jurisdictions as 
diverse as local governments, local school boards, and state agencies (Governor’s Report, 1996). 
The State allowed the jurisdictions to choose any code from the four allowed codes and granted 
them the authority to amend the code according to their needs, as long as the amendments 
resulted in more stringent requirements and the power to enforce it.  
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Problems in the Building Code System 
 
After 1975, there were two main codes in use in Florida before the 1990s: the SFBC in Miami-
Dade and Broward counties and the SBC in most of the rest of the state. Although the SFBC was 
the most stringent code in Florida, this was uncorrelated with compliance and enforcement from 
many builders, design professionals, and inspectors. To a lesser extent, some of the code 
stringency was eroded for almost three decades (Getter, 1992; Fronstin & Holtmann, 1994). 
Some measures that watered down the code included the allowance of power-driven staples 
instead of nails for roof decking, thinner roofing-felt, 63 mph resisting shingles, and waferboards 
(pressed wood) as a replacement for plywood for roof decking. A study by Florida A&M 
University published in 1987 also highlighted deficiencies in code compliance and enforcement 
in the rest of Florida. Furthermore, the local amendments created a state of confusion, making it 
difficult for engineers, architects, and contractors to identify the locally administered codes and 
their jurisdictions (Shingle, 2007; Barnes et al., 1991). 
 
The aftermath of Hurricane Andrew confirmed the concerns reported above. Post-storm damage 
surveys revealed innumerable violations to the SFBC (the absence of corner columns, vertical 
reinforcement, and gypsum board used as wall sheathing to name a few) that produced 
catastrophic failures of buildings (Khan & Suaris, 1993; Siddiq Khan & Associates, 1993). 
Clearly there were serious shortcomings in the compliance and enforcement process. 
 
For later hurricanes like Opal and Erin in 1995, the rebuild process was also delayed because of 
the intricacies of the jurisdictional, enforcement, and compliance issues of the codes, 
exacerbating losses. An expeditious and unambiguous system would have eased proper 
compliance and enforcement and therefore would have drastically reduced losses (Governor’s 
Report, 1996). 
 
Post-Andrew Building Code Development Enforcement 
 
The South Florida Building Code 
 
Three to four months after Hurricane Andrew, South Florida began to reform the code and the 
code enforcement system. Engineers became directly involved in the design of residential 
structures. OSB decking and staples were banned. Wind-rated shingles were required. In 1994 
the whole SFBC was reformed and adopted the ASCE 7 wind provisions. 
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The Florida Building Code 
 
After Hurricane Andrew, local and state agencies were unsure about how to guarantee building 
safety. Concerns arose that a diminution of insurance availability would occur, which threatened 
the continuity of economic growth. In response, Governor Lawton Chiles established a Building 
Codes Study Commission in 1996 to review the current system of codes. The Governor’s 
Commission found that the existing system had led to a “patchwork of technical and 
administrative processes.” Its recommendations led to the formation of the Florida Building 
Commission in 1998, which was responsible for creating a unified Florida Building Code 
(Governor’s Report, 1996). 
 
For the new unified Florida Building Code (FBC), the Commission selected the SBC, developed 
in Alabama from 1940 to 1945 (Ratay, 2009), as the base code because 64 out of 67 counties 
were already using the 1973 and the 1997 versions of the code with amendments (Shingle, 
2007). The SFBC was later included as an additional base code in 1999 to meet South Florida’s 
special requirements. The Building Commission worked to reach a consensus among all 
stakeholders, and the first version of a unified FBC was made effective on March 1, 2002 (Blair, 
2009). Studies indicate that the losses due to hurricanes have decreased since the enactment of 
the FBC (Gurley et al., 2006). 
 
Application of the Building Code History 
 
The history above clearly indicates that a completely accurate accounting of all building 
practices in every region of Florida going back many decades is not possible, given the limited 
policy information of age and location. To accommodate the history of residential building 
construction practice in Florida, buildings were classified into different eras. The classifications 
shown in Table 6 were adopted for characterizing the regions by age and model. The strength 
descriptions within Table 6 are provided at the bottom of Table 6 in terms of the nomenclature 
used in Tables 1a and 1b. The specific building eras and classifications per region are based on 
the evolution of the building codes in Florida and the opinions of the experts consulted. 
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Table 6. Age classification of the models per region. 

  Pre-1960 1960-1970 1971-1980 1981-1993 1994-2001 2002-pres. 
HVHZ 
  

⅔ modified 
Weak,  
⅓ Medium 

⅔ Weak,  
⅓ Medium 

½ Weak,  
½ modified 
Medium 

⅔ Weak,  
⅓ modified 
Medium 

Modified 
Strong 

Modified 
Strong 

Keys  ½ modified 
Weak,  
½ Medium 

Medium Medium Medium ⅓ Medium 
⅔ Strong_OP 

Strong_OP 

WBDR modified 
Weak 

⅔ Weak,  
⅓ Medium 

⅓ Weak, 
⅔ Medium 

⅓ Weak, 
⅔ Medium 

½ Medium, 
½ Strong_OP 

Strong_OP 

Inland modified 
Weak 

⅔ Weak,  
⅓ Medium 

½ Weak,  
½ Medium 

½ Weak,  
½ Medium 

½ Medium,  
½ Strong 

Strong 

Table 6 Nomenclature with respect to Tables 1a and 1b          

Strong:   S00 
Strong_OP:   S00-OP 
Modified Strong:  S01  
Medium:   M00 
Modified Medium:  M10 
Weak:    W00 

Modified Weak:  W10 
 

 
Note: HVHZ means high velocity hurricane zone; WBDR means wind borne debris region. 

 
Appurtenant Structures 
 
Appurtenant structures are not attached to the dwelling or main residence of the home but are 
located on the insured property. These types of structures could include detached garages, 
guesthouses, pool houses, sheds, gazebos, patio covers, patio decks, swimming pools, spas, etc. 
Insurance claims data reveal no obvious relationship between building damage and appurtenant 
structure claims. The variability of the structures covered by an appurtenant structure policy may 
be responsible for this result. 
 
Since the appurtenant structures damage is not derived from the building damage, only one 
vulnerability matrix is developed for appurtenant structures. To model appurtenant structure 
damage, three equations were developed. Each determines the appurtenant structure insured 
damage ratio as a function of wind speed. One equation predicts damage for structures highly 
susceptible to wind damage, the second predicts damage for structures moderately susceptible to 
wind damage, and the third predicts damage for structures that are affected only slightly by wind. 
Because a typical insurance portfolio file gives no indication of the type of appurtenant structure 
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covered under a particular policy, a distribution of the three types (slightly vulnerable, 
moderately vulnerable, and highly vulnerable) must be assumed and is validated against the 
claim data.  
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VULNERABILITY COMPONENT: COMMERCIAL RESIDENTIAL MODEL 

 
Given the hurricane hazard defined by the atmospheric component, the engineering component 
performs several tasks: (1) it estimates the physical damage to exterior components of typical 
buildings or apartment units; (2) it assesses the interior and utilities damage and contents damage 
due to water penetration through exterior damage and defects to interior walls, ceiling, doors, 
etc.; (3) it combines the exterior and interior damage to estimate the building and content 
vulnerabilities; (4) it estimates the time related expenses; and (5) it estimates appurtenant 
structure vulnerability (Pita et al., 2008, 2009a, 2009b, 2009c, 2010, 2011a, 2011b, 2011c, 
2012a, 2012b; Pinelli et al., 2009b, 2010b ; Weekes et al., 2009). 
 
Exposure Study 
 
Most low-rise commercial residential buildings (LB) (Figure 13) can be categorized into a few 
generic groups having similar structural characteristics, layout, and materials, although they may 
differ somewhat in dimensions. These buildings can suffer substantial external structural 
damage, in addition to envelope and interior damage, from hurricane winds. The modeling 
approach to assessing damage for these building types is the same as that for assessing damage 
for single-family homes, modeling the building as a whole.  
 
However, commercial residential mid- and high-rise buildings (MHB) (Figure 14) are very 
different from low-rise buildings and single-family homes. The mid-/high-rise buildings are 
engineered structures, which suffer few structural failures during a windstorm are subject to 
water ingress from cladding and opening failures. These buildings, which come in many 
different types, shapes, height, and geometries, consist of steel, reinforced concrete, timber, 
masonry, or a combination of different structural materials.  
 
It is not realistic to perform damage simulations on a reduced collection of ‘base’ buildings, as is 
done for single-family residential and low-rise commercial residential buildings, because that 
will necessarily leave out a majority of existing mid- and high-rise typologies. For instance, for 
steel frame structures alone there are a wide variety of possible building shapes and 
configurations. These different shapes lead to very different wind-loading scenarios and 
therefore different vulnerabilities. Equally important, the number of MHB is at least an order of 
magnitude smaller than the number of PRB or LB. It is therefore not feasible to average the 
losses over a very large number of buildings and compensate small differences between 
buildings, as in the case of PRB. On the contrary, the analyst is faced with a relatively small 
number of buildings, each of which is different from the other. 
 
As a result, the FPHLM has adopted a modular approach to model mid- and high-rise buildings. 
Rather than considering a structure as a whole, the model treats the building as a collection of 
apartment units. The base modules are typical apartment units, divided as corner and middle 
units. Thus, buildings with any number of stories and any number of units per floor can be 
modeled by aggregating the corresponding apartment units’ vulnerabilities and accounting for 
correlation of damage among units (e.g., water ingress through an envelope breach in a fifth-
floor unit creates problems for lower units with no failures).  
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To summarize, in the case of LB (low rise buildings), typical models of the whole structure that 
are representative of the vast majority of this building population in Florida were defined. In the 
case of MHB (mid-high rise buildings), typical models of individual units that are representative 
of the vast majority of units in Florida were defined.  
 
An extensive survey of the commercial residential Florida building stock was carried out to 
generate a manageable number of these building and apartment models to represent the majority 
of the Florida residential building stock. The modelers analyzed Florida counties’ property tax 
appraisers’ (CPTA) databases for building stock information. Although the database contents and 
format vary from county to county, many of the databases contain the structural information 
needed to define the most common structural types.  Information from 21 counties was collected 
for commercial residential buildings. The modelers extracted information on several building 
characteristics for classification, including roof cover, roof shape, exterior wall material, number 
of stories, year built, building area, foundation type, floor plan, shape, and opening protection. 
 

 
Figure 13. Typical low‐rise buildings (LB). 

 

 
Figure 14. Examples of mid‐ and high‐rise buildings (MHB). 

 
Commercial Residential Building Survey 
 
In the case of the commercial residential buildings, the CPTAs classify the buildings either as 
condominiums or as multifamily residential (MFR) based only on the type of ownership. Condo 
buildings are such that each unit or apartment has a different owner. The condo unit can then be 
occupied by the owner or by a renter. The CPTAs do not record if the condo unit is rented or 
owned. Condo owners’ expenses include the maintenance and use of the common areas and 
common facilities because the condo owner actually owns a percentage of the entire facility. The 
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condo buildings relevant to this survey are all classified by the CPTAs as residential. 
Commercial office condo buildings are out of the scope of the survey.  
 
A MFR building has a single owner who rents the units to tenants. The CPTAs classify MFR 
buildings with fewer than 10 units (duplex, triplex, and quadruplex) as residential buildings; 
MFR buildings with 10 units or more are classified as commercial buildings. Both residential 
and commercial MFR buildings were considered in this survey. MFR buildings are 
interchangeably referred to as apartment buildings by CPTAs. Residential MFR buildings (fewer 
than 10 units) account for approximately 70% of the MFR building stock, and the remaining 
30% are commercial MFR buildings (10 units or more). 
 
The commercial-residential buildings, regardless of whether they are condos or MFR buildings, 
were divided in two categories: low-rise (one–three stories) and mid-high rise (four stories and 
more). Low-rise buildings have three stories or fewer. The survey shows these buildings, which 
represent the majority of the building stock, have different characteristics than taller buildings. 
Unanwa (1997) uses a similar definition in his study. The mid- and high-rise buildings tend to be 
more heterogeneous and necessitate a different treatment in the vulnerability model. Owned as 
well as rented apartment units are included in this survey; the CPTAs do not distinguish between 
the two.  
 
Appraisers have confirmed that MFR buildings tend to have fewer stories than condo buildings 
and the majority of MFR buildings are duplexes, triplexes, and quadruplexes. Also, the 
proportion of MFR buildings that can be classified as mid-/high-rise is negligible according to 
available information and consultation with CPTAs. 
 
Building Models 
 
Distinctly different construction characteristics and modes of damage in high winds led to the 
development of separate models for low-rise commercial residential construction (LB) and mid-
/high-rise commercial residential construction (MHR).  
 
 
Low-Rise Commercial Residential Models 
 
The LB model was developed to represent typical apartment and town-house style structures of 
three stories or fewer (Figure 13).  The model framework is based on the single-family, site-built 
residential model, which uses a probabilistic description of wind loads and exterior and structural 
component capacities to project physical damage as a function of wind speed. The components 
in the LB damage model include roof cover, roof sheathing, roof-to-wall connections, wall type, 
wall sheathing, windows, entry doors, sliding-glass doors, soffits, and gable end truss integrity.  
 
Given the large array of sizes and geometries for low-rise commercial residential structures, the 
program is developed to provide flexibility in choosing a building layout and dimensioning 
details (footprint, overhang length, roof slope, roof shape, etc.). The changes in construction 
practice over decades in Florida also necessitate flexibility when choosing construction quality 
with regard to hurricane wind resistance. The model allows the selection of building components 
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with a variety of strength options to represent a range from low to high wind resistance (braced 
or unbraced gable ends, old or new roof cover, sheathing nailing schedules, etc.).  
 
A standard (default) model was developed based on the building exposure study that quantified 
average square footage per story, units per story, and other descriptors. Default settings were also 
developed to represent weak, medium, and strong construction practice. Any given strong, 
medium, or weak model may be altered by additional mitigation or retrofit measures individually 
or in combination. For example, reroofing an older apartment can be represented by increasing 
the probabilistic descriptor of capacity for the roof cover. 
 
Outputs (damage matrices) have been produced for each combination of the following: building 
height (one, two, or three stories), wall type (timber or masonry), roof shape (hip or gable), 
strength (weak, medium, or strong), and window protection (no protection or with metal 
shutters).  
 
Mid-/High-Rise Commercial Residential Models 
 
The mid-/high-rise model uses the Monte Carlo simulation concept, but it differs from the low-
rise model in significant ways. There is a high level of variability among mid-/high-rise 
buildings because of the combination of the number of stories, the number of units per floor, 
intentionally unique geometries, and the materials used for the exterior. This makes the 
application of a “standard” or default model unfeasible. Because of the construction methods and 
materials used in these structures, damage to the superstructure and exterior surfaces of the 
buildings tends to be relatively minor. The majority of damage accumulation in mid-/high-rise 
structures is due to water penetration and failure of openings. The model reflects this by focusing 
on the failure of windows and doors, the ingress of rain water, and the proliferation of water 
from the source of the ingress to adjacent living units. The structure in whole is not modeled. 
Rather, individual units are modeled in isolation. That is, the vulnerability of a single unit is 
explicitly modeled, and damage is assessed to openings as a function of wind speed. 
 
Two different mid-/high-rise classifications are modeled for this study: “closed building” and 
“open building.” Closed buildings are characterized by the location of the unit entry doors at the 
interior of the building. The sliding-glass doors and windows are all facing the exterior of the 
building. For the open building model there is exterior corridor access to each unit entry door on 
one side of the building, and the patio areas are situated on the opposite side of the building 
(Figure 15). The type of building chosen can increase or decrease the vulnerability of a selected 
unit because of the exposure of the exterior openings. Middle units in a closed or open building 
have one or two exterior walls, respectively.  
 
There are three main differences between the low-rise and mid-/high-rise models: (1) the use of a 
modular (i.e., per unit rather than per building) approach, (2) the exterior components being 
analyzed for failure, and (3) the use of two basic floor plans. Location of unit within the plan 
view of the building, unit square footage, and number of available openings are some of the 
important factors that separate one unit from another.  
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Corner units are subjected to higher wind pressures that are present along the edges of the 
building, compared to the middle units, which are located within lower pressure zones at the 
center of the wall area (Figure 15). Increased square footage typically results in an increase in 
exterior wall frontage and the number of openings vulnerable to damage. 
 
The MHB model uses the same analysis and output technique as the LB model. The difference is 
the number of failure types modeled. The MHB model analyzes only the damage to the 
openings, which include the windows, sliding doors, and entry doors. Each of the components 
can fail due to pressure or debris impact. 
 

 
Figure 15. Apartment types according to layout (left: closed building with interior entry door; right: 

open building with exterior entry door). 

 
Damage Matrices 
 
Exterior Damage 
 
The vulnerability model uses a Monte Carlo simulation based on a component approach to 
determine the external vulnerability (as shown in Figure 10) at various wind speeds of buildings 
in the case of LB, or apartment units in the case of MHB. For the case of LB, the procedure is 
identical to the one described for single-family residential (PRB). In the case of MHB, the 
simulations address only wind pressure and debris impact on the openings. 
 
The damage assessment is conducted over a range of wind speeds and wind directions, and 
results are stored in a damage matrix. Probabilistic damage assessment is conducted by first 
creating an individual building realization by mapping each component according to typical 
construction practice. Random capacity values are assigned to the various components on the 
basis of a probability distribution for each component type. This realization is subjected to a peak 
three-second gust wind speed from a particular direction. Directional loads are calculated using 
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randomized pressure coefficients based on directional modifications to ASCE 7 as well as wind 
tunnel data (NIST Aerodynamic Database - http://fris2.nist.gov/winddata), and a comparison of 
resulting surface and internal loads to component capacities is conducted. Damage occurs when 
the assigned capacity of a component is exceeded by its loading. Once the openings have been 
checked for failure due to pressure, the damage due to the impact of windborne debris is also 
evaluated. Damaged components are removed, and a series of checks are performed to determine 
if lost components will redistribute loading to adjacent components or change the overall 
loading. For example, loss of a roof-to-wall connection places additional load on adjacent 
connections, whereas an envelope breach will potentially alter internal loading—changing the 
overall loading on most components. Iterative convergence is used to produce the final damage 
state for that building realization. The results of this single simulation are documented on the 
basis of the final iteration, another realization of that building is constructed by assigning new 
random capacities to each component, and the process repeats for the same three-second gust, 
same wind direction, and newly randomized pressure coefficients based on the number of desired 
simulations the user would like to run. The process is repeated for eight wind directions and a 
series of three-second wind speeds between 50 and 250 mph in 5 mph increments.  
 
The output of the Monte Carlo simulation model is an estimate of physical damage to structural 
and exterior components. The results are in the form of a four-dimensional damage matrix. Each 
row of the matrix lists the results of one simulation. The amount of damage to each of the 
modeled components for a simulation is listed in 75 columns. The third dimension represents the 
peak three-second gust wind speed between 50 and 250 mph in 5 mph increments, and the fourth 
dimension represents the eight angles between 0 and 315 degrees in 45-degree increments. Table 
7 delineates the damage matrix contents for the case of the LB. A description of each of the nine 
columns of the MHB damage matrix is given in Table 8.  
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Table 7. Description of damage matrices for LB. 

Column # Timber Models Masonry Models 
Col 1 Percent roof cover (shingles or tiles) failed 
Col 2 Percent field roof sheathing lost (field roof sheathing is all but overhang) 
Col 3 Percent edge (overhang) roof sheathing failed 
Col 4 Percent roof-to-wall connections failed 
Col 5 Collapse of gable end trusses (0 = no, 1 to 20) starting from side 1 
Col 6 Collapse of gable end trusses (0 = no, 1 to 20) starting from side 2 

Col 7-8 
Percent gable end wall covering failed (side 1 and 2, positive for 

windward, negative for leeward) 

Col 9-10 
Percent gable end sheathing failed (side 1 and 2, positive for windward, 

negative for leeward) 

Col 11- 14 

Percent wall covering failed 
– 1st floor (walls 1-4, 
positive for windward, 
negative for Leeward) 

Shear Damage Ratio for Masonry Walls- 
1st Floor (walls 1-4, positive for 
windward, negative for leeward) 

Col 15-18 

Percent wall sheathing failed 
– 1st floor (walls 1-4, 
positive for windward, 
negative for leeward) 

Bending Damage Ratio for Masonry 
Walls- 1st Floor (walls 1-4, positive for 

windward, negative for leeward) 

Col 19-22 
Number of windows failed from wind pressure – 1st floor - (walls 1-4, 

positive for windward, negative for leeward) 
Col 23-26 Number of windows failed from wind Debris– 1st floor - (walls 1-4) 

Col 27 
Number of sliding glass doors failed from wind pressure – 1st floor (+ for 

windward - for leeward) 
Col 28 Number of sliding glass doors failed from debris impact – 1st floor 

Col 29 
Number of entry doors failed from wind pressure – 1st floor (+ for 

windward - for leeward) 
Col 30 Number of entry doors failed from debris impact – 1st floor 

Col 31-50 Repeat Col 11 - Col 30 for 2nd Floor 
Col 51-70 Repeat Col 11 - Col 30 for 3nd Floor 

Col 71 Garage Door Damage (positive for windward, negative for leeward) 
Col 72-75 Percent Soffit Damage (walls 1-4) 
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Table 8. Description of the damage matrices for MHB apartments. 

Commercial and Single Family Residential 
Column 

# 
Inner and Outer Stair Models 

Col 1 Number of Windows failed from wind pressure 
Col 2 Number of Entry Doors failed from wind pressure 
Col 3 Number of Sliding failed from wind pressure 
Col 4 Number of Windows failed from debris impact 
Col 5 Number of Entry Doors failed from debris impact 
Col 6 Number of Sliding failed from debris impact 
Col 7 Number of Windows breached from debris impact 
Col 8 Number of Entry Doors breach from debris impact 
Col 9 Number of Sliding breach from debris impact 

 
 
Interior and Utilities Damage 
 
The FPHLM introduces a novel approach to assessing the interior damage by considering the 
physics of the problem. The approach starts from the damage to the building envelope (Weekes 
et al., 2009), described in the previous section. The model then estimates the amount of wind-
driven rain that enters through the breaches and defects in the building envelope and converts it 
to interior damage. The approach is described below (Pita et al., 2012a).  
 
Description of the Model 
 
The method described hereafter (Figure 16) combines existing building defects and estimated 
building envelope damage with the impinging rain to predict the amount of water that will enter 
a building. This physically based approach models the main contributor to interior damage, 
addresses the uncertainty in the interior damage source, and documents the individual water 
ingress contribution of each component to the total water intrusion. 
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Figure 16. Flowchart of the interior damage model. 

 
The exterior building components that the model considers include roof cover, roof sheathing, 
wall cover, wall sheathing, gable cover, gable sheathing, windows, doors, and sliding doors. In 
the case of MHB units, only windows, doors, and sliding doors are considered. For a given wind 
speed, the model first estimates breach areas of each component from the exterior damage array. 
The area of existing defects in envelope components is estimated based on surveys (Mullens et 
al., 2006) and engineering experience. 
 
In order to estimate water intrusion into the buildings, a study was performed to estimate the 
likely accumulated horizontally impinging rain on a structure during a hurricane event. This 
study used a simulation model that is composed of a simplified wind model and the R-CLIPER 
rain rate model developed at NOAA HRD (Lonfat et al., 2007) and is used operationally at NHC. 
The simplified wind model is based on the Holland (1980) radial profile and includes parameters 
for the pressure profile ("B"), radius of maximum winds, translation speed and central pressure. 
Additionally, the Vickery (2005) pressure filling model was used to decay the storms. Storm 
parameters are sampled from distributions relevant to Florida. The R-CLIPER model determines 
the vertically free-falling rain rates at each time step of the simulation. The R-CLIPER rain rate 
is essentially an azimuthally averaged rain rate that varies as a function of radius and maximum 
intensity of the storm. 
 
The total potential impinging rain rate is calculated as a function of the vertical rain rate (rr), the 
horizontal mean wind speed (Vh) and the terminal velocity of the rain drops (Vt). We may write 
this as  

 

th VVrr=IR /


 

  
The actual impinging rain rate entering a building is assumed to be a fraction of the total 
potential impinging rain rate by the use of a rain admittance factor  (RAF)  that is described in 
Disclosure 4 in the Vulnerability Standard. The vertical rain rate is determined from the R-
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CLIPER model. The terminal velocity depends on the rain drop size (D), which in turn has a 
distribution based on rain rate. We use a rain drop distribution based on Willis and Tattelman 
(1989): 
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The term NG is the concentration parameter, γ is the slope parameter, α is the curvature 
parameter, M is the water content, and D0 is the median volume diameter. 
 
The terminal velocity is based on Dingle and Lee (1972): 
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We compute an average Vt based on the mass flux contribution of each drop size to the rain rate 
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We define the Driving Rain Factor (DRF) as  

 

 
tV

=rrDRF
1

 
 

The DRF is a function of the rain rate. The R-CLIPER model, as mentioned above, produces a 
rain rate that is based on the azimuthal average of rain rate as a function of radius to center of the 
storm. Thus the averaged rain rate includes locations where there is very little or no rain. So the 
DRF could have a high bias if based solely on an average rain rate, since the terminal velocity 
increases with drop size, which in turn increases with rain rate. We seek to compute an effective 
DRF that is an average of the DRF weighted by the distribution of rain rates that contribute to the 
average rain rate estimated by R-CLIPER, as follows 
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      drrrr,rrgrrDRF=rrDRF  

 
where g is the rain rate distribution from TRMM observations that yield a given mean rain rate, 
rr .  Rain rate distributions generally follow a log normal distribution (e.g., Marks et al., 1993). A 
study by Lonfat et al. (2004) using TRMM data shows figures that suggest rain rates have a log 
normal distribution. Hence we may provisionally assume that g has a log normal distribution. We 
can estimate the range of the mode and frequency of the mode using probability distribution 
functions shown in figures from Lonfat et al. (2004) for the entire range of possible radii and 
storm intensity. These two parameters uniquely determine the distribution. We find that using a 
range of values for these two parameters, the mode ranging from 1 to 10 mm/hr and frequency of 
the mode ranging from 7% to 11%, the effective DRF is approximately 0.18 and does not vary 
by more than a few percent of this value. Given that the DRF is insensitive to relatively large 
changes in these parameters, it is unlikely that the DRF would be sensitive to a choice of 
reasonable alternative distributions (such as a gamma), and also not likely to be sensitive to 
parameter estimation due to maximum likelihood approximations, for example.  
 
We use a simple wind model to provide a time series of the peak three-second gust wind for a 
given station location. The wind model is a simple Holland B-type model that incorporates a 
term for the translation speed. The wind speed, assumed to be valid at gradient wind height 
(taken to be 700 mb), is given by 

 

    BRB r
erRρBdp+W+W=W

/
// max

max
2

00


 

 
where 

 
  frθc=W sin 0.50  

 
and B is the Holland B shape profile, dp is the central pressure deficit, ρ is the air density, Rmax 
is the radius of maximum winds, r is the radius to center of the storm, c is the translation speed, f 
is the Coriolis parameter and θ is the angle between the vector for the storm motion and the 
vector pointing to the station location with reference to the center of the storm. 
 
The gradient winds are reduced to winds at 300 m using a radially dependent gradient conversion 
factor based on dropsonde data from Franklin et al. (2003). Further details can be found in Axe 
(2004). Finally, winds are reduced to surface using a log wind profile. The surface roughness 
length was assumed to be 0.45 m, though tests were done using 0.30 m without significant 
difference in the final results. A gust factor was used to obtain the peak three-second gust based 
on ESDU methodology (Vickery & Skerlj, 2005).  
 
The effects of storm decay at landfall are modeled using a pressure filling model (Vickery, 
2005). This is the same pressure filling model used in the FPHLM. The distance of simulated 
stations to the shore line are modeled using a uniform distribution ranging from 0-100 km. This 
distance effectively determines the time before the storm begins to decay. 
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The parameters used to specify the storm characteristics are based on statistical distributions 
relevant to Florida. For each storm simulation, a set of parameters were sampled from their 
respective distributions.  Table 9 provides a list of parameters and their associated distributions 
used in the model, as well as the reference. Please refer to the references provided in the table for 
details on the distributions.  In the table below, the reference “FPHLM” refers to the present 
document, particularly the discussion above in this disclosure under Meteorology Component. 
 

Table 9. Parameter Distributions used in the Rain Study. 

Parameter Description Distribution Reference 

B Pressure shape profile Gaussian FPHLM (Standard G-
1.2) 

dp central pressure deficit Weibull Huang et al. (2001) 

c translation speed Log Normal Huang et al. (2001) 

Rmax radius maximum winds Gamma FPHLM (Standard G-
1.2) 

e_decay pressure filling error term Gaussian Vickery (2005) 

Dshore distance to shore Uniform Present Study 
 
 
The model simulates the duration of the event from the time a location enters the storm affected 
area (defined as being within 450 km of the storm center) until exit. The number of storm 
simulations was 100,000 and for each simulation, 91 locations were selected to record the 
accumulated impinging rain ("IR") and maximum three-second wind gust at 10 m. Each location 
was specified to be a multiple of 10 km away from the storm closest approach to center (from 
450 km to the left of the storm to 450 km to the right of the storm, in steps of 10 km. A direct hit 
is at 0 km). The time step of the model was 0.1 hr. In addition to the total impinging rain during 
the event, separate accumulations were recorded starting at the time that a location experiences 
the peak wind of the storm event ("IR2"). The impinging rain accumulated prior to the maximum 
peak gust ("IR1") is computed as the difference: IR1=IR-IR2. The resulting accumulations are 
then distributions of impinging rain as a function of the peak three-second wind gust for 10 meter 
height.  
 
The product of the areas of the breaches and defects by the impinging rain conveys the amount 
of water that enters the building. The water penetration is computed as follows. 
 
Water penetration through defects: 
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Water penetration through breaches: 
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Where:  
 height of water that accumulates due to defects in component i, in inches 
:  height of water that accumulates due to envelope breaches in component i, in 

inches 
k: adjustment factor  
RAF:  rain admittance factor 
dCi:  defects percentage   
ACi:  area of component i  

:  breach area of component i  
Ab:  floor area  
IR1 :  accumulated impinging rain prior to maximum wind 
IR2 :  accumulated impinging rain after the occurrence of maximum wind 
SCi : survival factor for component i = 1 – AB

Ci / ACi 
 
These terms are discussed in more detail in the Vulnerability Standard. 
 
The full distribution of impinging rain from the simulation is used in the development of the 
vulnerability matrices for low-rise structures. For mid-/high-rise structures, the mean value of the 
distribution of the impinging rain as a function of wind speed is used in the calculation of water 
intrusion, and hence damage, in the Loss Module. Figure 17 shows the mean IR1 and IR2 as a 
function of peak three-second gusts at 10 m. As shown in the figure, simple regressions were 
performed to facilitate calculations in the Loss Module. Note that for very high wind speeds 
there is large sampling error, as these are rare events, and thus the relation between mean rain 
and wind speed is less reliable.  
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Figure 17. Mean accumulated impinging rain as a function of peak 3‐second wind gust. 
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This approach estimates the amount of water that enters through each component of the 
envelope. The total amount of water is calculated by adding the contribution of all components 
for a given wind speed, and by estimating the water which percolates from story to story. The 
final step maps water inside the building to interior damage with a bilinear relationship, where 
total interior damage is achieved for a certain threshold of height of accumulated water (currently 
set at 1 inch). 
 
Contents Damage 
 
Contents include anything in the building that is not attached to the structure itself. As in the case 
of interior and utilities damage, the contents damage is assumed to be a function of the amount of 
water that penetrates the building, and it is therefore proportional to interior damage. The 
function is based on engineering judgment and is validated using claims data. In the case of a 
condo building, only the contents of the common areas are covered by the policy. In the case of 
an apartment building, the personal contents of the renters are not covered by the building policy. 
 
Time Related Expenses 
 
Time Related Expenses refer to loss of rent for owners of apartment buildings, which are mainly 
low-rise commercial residential buildings. As in the case of interior and utilities damage, the 
Time Related Expenses are assumed to be a function of the amount of water that penetrates into 
the building, and they are therefore proportional to interior damage. The function is based on 
engineering judgment and should be validated using claims data, which is almost non-existent. 
 
Vulnerability Matrices for Low-Rise Buildings 
 
Unweighted Vulnerability Matrices of LB 
 
A description of the process to estimate the total vulnerability of low-rise buildings is displayed 
in Figure 10.  Given a particular building type, the Monte Carlo simulation-generated damage 
array that expresses the exterior damage in the envelope is loaded. For a particular wind speed 
and wind direction, each component’s physical damage is normalized to a percentage value. For 
instance, the number of damaged doors, windows, and sliding doors is divided by the total 
number of the corresponding openings; collapsed trusses are divided over the total number of 
trusses, etc. The cost of the damage is then assessed.  
 
Interior damage is estimated by (1) simulating the amount of wind-driven rain that enters through 
the breaches and defects in the building envelope, (2) propagating water from floor to floor, and 
(3) converting to damage to interior and utilities.  
 
Replacement cost ratios provide the link between modeled physical damage and the 
corresponding monetary losses. They can be defined as the cost of replacing a damaged 
component or assembly of a building divided by the cost of constructing a completely new 
building of the same type. An explicit procedure is used to convert physical damage of the 
modeled components to monetary damage. The procedure is almost identical to the one already 
described for single-family residential buildings. The damage ratio (DR) as a function of wind 
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speed for the exterior, interior, and utilities is calculated by adding the corresponding costs of 
damaged exterior plus damaged interior plus damaged utilities divided over the overall building 
cost that is contingent upon the type and size of the building.  
 
Derivation of the probability distribution functions of damage at each wind speed interval is the 
final step of the process. For each wind speed interval, the probability of damage given that wind 
speed interval (i.e., the cells of the vulnerability matrices) is computed as the summation of 
specific damage ratios for all wind directions divided by the total number of simulations at that 
particular wind speed interval. 
 
Weighted Vulnerability Matrices of LB 
 
In the case of LB, vulnerability matrices were created for every combination of construction type 
(masonry, timber, or other), roof shape (gable or hip), roof cover (tile or shingle or metal), 
shutters (with or without), number of stories (one, two, or three), and subregion (inland, wind-
borne debris region, and high velocity zone). However, in general, there is little information 
available in an insurance portfolio file regarding the structural characteristics and the wind 
resistance of the insured property. Instead, insurance companies rely on the ISO fire resistance 
classification. Portfolio files have information on ZIP Code and year built. The ISO classification 
is used to determine if the home is constructed of masonry, timber, or other. The ZIP Code is 
used to define the subregion. The year built is used to assist in defining whether a building 
should be considered weak, medium, or strong.  
 
From the insurance files, sub-region, construction type, and year built are determined. This 
leaves the roof shape, roof cover, number of stories, and shutter options undefined. From the 
exposure study of 21 Florida counties, the distribution of these parameters can be extrapolated. 
For each age group, we define a weighted matrix for each construction type in each sub-region. 
The procedure is identical to the one already described for single-family buildings.  
 
Age-Weighted Matrices of LB 
 
The year built or year of last upgrade of a structure in a portfolio may not be available when 
performing a portfolio analysis to estimate hurricane losses in a certain region. In that case, it 
becomes necessary to assume a certain distribution of ages in the region to develop an average 
vulnerability by combining weak, medium, and strong. Here again, the procedure is identical to 
the one described for single-family residential buildings. 
 
Mapping of Insurance Policies to Vulnerability Matrices for LB 
 
The mapping of the low-rise vulnerability matrices to the insurance policies in any given 
portfolio is also very similar to the process already reported for single-family buildings. 
 
LB Models’ Distribution in Time 
 
The low-rise building models’ distribution in time is similar to that of the single-family 
buildings. 
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Vulnerability of Mid-/High-Rise Buildings 
 
MHB opening vulnerabilities 
 
In the case of MHB, a process similar to the one described above is followed to derive exterior 
vulnerability and breach curves for different openings of typical apartment units. These curves 
are derived for the cases of open and closed buildings, for corner and middle units, with different 
opening protections (with or without impact-resistant glass; with or without metal shutters). Each 
vulnerability curve for openings of corner or middle apartment units (window, door, or slider) 
gives the number or fraction of opening damaged as a function of wind speed.  Each breach 
curve for openings of corner or middle apartment units (window, door, or slider) gives the breach 
area in ft2 of opening damaged as a function of wind speed. 
 
MHB building vulnerability 
 
Unlike the single-family home loss model in which interior and exterior damage was aggregated 
inside the vulnerability module, the aggregation for mid-/high-rise buildings is performed outside 
that module because of the interior damage propagation. The modular approach produces 
independent assessments of exterior damage for each unit while also considering the interior 
water damage that can spread from unit to unit and trigger damage far from its source. Therefore, 
interior damage is treated in two stages: the first stage occurs as a direct result of the exterior 
damage, and the second occurs as a consequence of propagation between units. The separate 
modeling of exterior and interior damage is also well suited to dealing with the insurance issue of 
different insurance coverage for apartment and condo buildings.  
 
The process for damage estimation for MHB is presented in Figure 18. For each policy in the 
portfolio, the program reads the information on the building (location and number of stories and 
units) and assigns a wind speed profile based on its location (i.e., surrounding terrain). The 
algorithm calculates the number of corner and middle units per floor (ac and aM) and loads the 
corresponding opening vulnerability and breach curves (VC,M and BC,M). The vulnerability 
curves, combined with the wind speed value at every story, Wi, yield the number of openings of 
each kind damaged at each story, which are then assigned a replacement cost, CW,D,S. The result 
is the cost of damage to the openings at each story (CDOs), which is then accumulated over all 
the stories as the total expected cost of damage to the openings (TECDO). 
 
For the interior damage estimation the process is similar. From the wind profile, the 
corresponding wind speed, Wi, is calculated at each story. For a given story and its 
corresponding wind speed, the value of the expected breach size for windows, entry door, and 
sliding door, BC

W.D,S and BM
W.D,S,, are  retrieved from the corresponding breach curves. The 

breach size of each component is added to get the total breach size per story. The next step is to 
estimate the amount of water that will enter a particular story with a given breach size, as 
described in the section describing the interior damage model. Note that for the sake of 
simplification, defects are not represented in the flow chart. 
 
A scheme for vertical propagation of water between floors was implemented. The water content 
is then transformed at each story into an interior damage ratio (ID) based on the bilinear 
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relationship described in Standard V-1. The final product of the interior damage assessment is 
the Expected Interior Damage Ratio (EIDR). 
 
At this point in the process, the algorithm has computed expected damages, both exterior 
(TECDO) and interior (EIDR), for the particular building of the policy under study. The EIDR is 
then multiplied by the interior insured value expressed as a percentage of the total insured value 
BV, thanks to a coefficient kI which varies for condos and apartment buildings. The final value is 
the total expected damage value (EDV). 
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Figure 18. Exterior and interior damage assessment for MHB. 
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Contents Vulnerability 
 
Contents include anything in the building that is not attached to the structure. In the case of a 
condo building only the contents of the common areas are covered by the policy. In the case of 
an apartment building, the personal contents of the renters are not covered by the building policy. 
In both cases, the contents vulnerability is proportional to the interior vulnerability. The constant 
of proportionality is based on engineering judgment and is validated using claims data. 
 
Time-Related Expenses 
 
Time-related expenses are coverage for loss of income due to the building damage. The value of 
a claim is obviously dependent on the time it takes to repair a damaged building as well as the 
surrounding utilities and infrastructure. This coverage applies only to apartment buildings, where 
the loss of income is the loss of rent. The time-related expenses are modeled as directly 
proportional to the interior vulnerability. 
 
Appurtenant Structures 
 
For commercial residential structures, appurtenant structures might include a clubhouse or 
administration building, which are treated like additional buildings. For other structures such as 
pools, etc., the appurtenant structures model developed for residential buildings is applicable. 
 

ACTUARIAL COMPONENT 
 
The actuarial component consists of a set of algorithms. The process involves a series of steps: 
rigorous check of the input data; selection and use of the relevant output produced by the 
meteorology component; selection and use of the appropriate vulnerability matrices for building 
structure, contents, appurtenant structure, and additional living expenses; running the actuarial 
algorithm to produce expected losses; aggregating the losses in a variety of manners to produce a 
set of expected annual hurricane wind losses; and producing probable maximum losses for 
various return periods. The expected losses can be reported by construction type (e.g., masonry, 
frame, manufactured homes), by county or ZIP Code, by policy form (e.g., HO-3, HO-4, etc.), by 
rating territory, and combinations thereof.  
 
Expected annual losses are estimated for individual policies in the portfolio. They are estimated 
for building structure, appurtenant structure, contents, and ALE on the basis of their exposures 
and by using the respective vulnerability matrices or vulnerability curves for the construction 
types.  For each policy, losses are estimated for all the hurricanes in the stochastic set by using 
appropriate damage matrices and policy exposure data.  The losses are then summed over all 
hurricanes and divided by the number of years in the simulation to get the annual expected loss. 
These are aggregated at the ZIP Code, county, territory, or portfolio level and then divided by the 
respective level of aggregated exposure to get the loss costs. This is a computationally 
demanding method. Each portfolio must be run through the entire stochastic set of hurricanes.  
 
The distribution of losses is driven by both the distribution of damage ratios generated by the 
engineering component and by the distribution of wind speeds generated by the meteorology 
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component. The meteorology component provides, for each lat-long grid, the associated 
probabilities for a common set of wind speeds. Thus, locations are essentially differentiated by 
their probability distribution of wind speeds. The meteorology component uses up to 56,000 year 
simulations to generate a stochastic set of storms. The storms are hurricane events at landfall or 
when bypassing closely. Each simulated storm has a track and a set of modeled windfields at 
successive time intervals. The windfields generate the one-minute maximum sustained wind 
speeds for the storm at various locations (lat-long grid) along its track. These one-minute 
maximum sustained winds are then converted to three-second peak gust winds and corrected for 
terrain roughness by using the gust wind model and the terrain roughness model.  
 
For each lat-long grid, an accounting is then made of all the simulated storms that pass through 
it. On the basis of the number of pass-through storms and their peak wind speeds, a distribution 
of the wind speed is then generated for the grid. On the basis of this distribution, probabilities are 
generated for each 5-mph interval of wind speeds, starting at 20 mph. These 5-mph bins 
constitute the column headings of the damage matrices generated by the engineering component.  
 
The engineering group has produced vulnerability matrices for personal residential buildings and 
vulnerability curves for commercial residential buildings.  
 
Vulnerability matrices are provided for personal residential building structure, contents, 
appurtenant structures and additional living expenses for a variety of residential construction 
types and for different policy types. The construction types are masonry, frame, mobile home, 
and other. The vulnerability matrices are also developed for weak, medium, and strong 
construction as proxy by year built.  
 
Within each broad construction category, the vulnerability matrices are specific to the roof types 
and number of stories, etc. Since the policy data do not provide this level of specificity, weighted 
matrices are used instead, where the weights are the proportion of different roof types in given 
region as determined by a survey of the building blocks and exposure data. The vulnerability 
matrices are used as input in the actuarial model. 
 
The starting point for the computations of personal residential losses is the vulnerability matrix 
with its set of damage intervals and associated probabilities. Appropriate vulnerability matrices 
are applied separately for building structure, content, appurtenant structure, and ALE. Once the 
matrix is selected, for a given wind speed, for each of the midpoint of the damage intervals, the 
ground up loss is computed, the appropriate deductibles and limits are applied, and the loss net of 
deductible is calculated. More specifically, for each damage outcome the damage ratio is 
multiplied by insured value to get dollar damages, the deductible is deducted, and net of 
deductible loss is estimated, subject to the constraints that net loss is  0 and  limit – deductible.  
Percentage deductibles are converted into dollar amounts. Both the replacement cost and actual 
cash value are generally assumed to equal the coverage limit. Furthermore, if there are multiple 
hurricanes in a year in the stochastic set, the wind deductibles are applied to the first hurricane, 
and any remaining amount is then applied to the second hurricane. If none remains then the 
general peril deductible can be applied. 
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The net of deductible loss is multiplied by the probability in the corresponding cell to get the 
expected loss for the given damage ratio. The results are then averaged across the possible 
damages for the given wind speed. Next, the wind probability weighted loss is calculated to 
produce the expected loss for the property. The expected losses are then adjusted by the 
appropriate expected demand surge factor.  
 
In the case of low-rise commercial residential structures, the expected damage ratios (EDR) are 
derived from the vulnerability curves for the maximum wind in the given storms. The EDRs are 
multiplied by the respective coverage limits to produce the expected ground up building damage 
value (EDVB), and expected ground up content damage value (EDVC) for the storm. The 
deductible is then applied to these damage values on a pro-rata basis to generate the net of 
deductible expected losses. The process is repeated across all the storms in the stochastic set to 
produce the average loss for the policy. The expected losses are then adjusted by the appropriate 
expected demand surge factor. 
 
In the case of mid-high rise commercial residential buildings, the vulnerability component 
produces, for a given storm (or given vertical maximum wind profile) and across all the floors in 
the building, the total expected cost of damage to the openings (TECDO) and the expected 
interior damage ratio (EIDR). The EIDR is then multiplied by the fraction of the coverage limit 
corresponding to the value of the interior and added to the TECDO to produce the expected 
building damage value (EDVB). The expected content damage value (EDVC) is produced by 
multiplying a fraction of the EIDR by the content coverage limit. The deductible is then applied 
on a pro-rata basis to generate the expected loss for the storms. The process is repeated across all 
storms to produce the average loss for the policy. The expected losses are then adjusted by the 
appropriate expected demand surge factor.   
 
For commercial residential policies, if there are multiple risks (multiple structures) within the 
policy, the default is to apply the deductible at the risk level. The percentage deductible is 
applied to each risk based on their individual limit. If information is so available, then deductible 
is applied at the policy level. 
 
The demand surge factors are estimated by a separate model and applied appropriately to each 
hurricane in the stochastic set. The surge factors for structures are a function of the size of 
statewide storm losses and are produced separately for the different regions in Florida. The surge 
factors for content and ALE are functionally related to the surge factor for structure. To estimate 
the impact of demand surge on the settlement cost of structural claims following a hurricane, 
data from 1992 to 2007 on a quarterly construction cost index produced by Marshall & 
Swift/Boeckh are used. The approach to estimating structural demand surge was to examine the 
index for specific regions impacted by one or more hurricanes since 1992.  From the history of 
the index we projected what the index would have been in the period following the storm had no 
storm occurred. Any gap between the predicted and actual index was assumed to be due to 
demand surge. In total ten storm–region combinations are examined. From these ten observations 
of structural demand surge the functional relationship is generalized.    
 
After the losses are adjusted for demand surge, they are summed across all structures of the type 
in the grid and also across the grids to get expected aggregate portfolio loss. The model can 
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process any combination of policy type, construction type, deductibles, coverage limits, etc. The 
model output reports include separate loss estimates for structure, content, appurtenant structure, 
and ALE.  These losses are also reported by construction type (e.g., masonry, frame, 
manufactured homes), by county or ZIP Code, by policy form (e.g., HO-3, HO-4, etc.), by rating 
territory, and combinations thereof.   
 
Another function of the actuarial algorithms is to produce estimates of the probable maximum 
loss for various return periods. The PML is produced non-parametrically using order statistics of 
simulated annual losses. Suppose the model produces N years of simulated annual losses. The 
annual losses L are ordered in increasing order so that L(1) ≤ L(2) ≤ . . . ≤ L(N). For a return 
period of Y years, let p = 1-1/Y. The corresponding PML for the return period Y is the pth 
quantile of the ordered losses. Let k = (N)*p. If k is an integer, then the estimate of the PML is 
the kth order statistic, L(k), of the simulated losses. If k is not an integer, then let k* = the 
smallest integer greater than k, and the estimate of the pth quantile is given by L(k*). 

 
COMPUTER SYSTEM ARCHITECTURE 

 
FPHLM is a large-scale system that is designed to store, retrieve, and process a large amount of 
historical and simulated hurricane data. In addition, intensive computation is supported for 
hurricane damage assessment and insured loss projection. To achieve system robustness and 
flexibility, a three-tier architecture is adopted and deployed in our system. It aims to solve a 
number of recurring design and development problems and make the application development 
work easier and more efficient. The computer system architecture consists of three layers: the 
user interface layer, the application logic layer, and the database layer.  
 
The interface layer offers the user a friendly and convenient user interface to communicate with 
the system. To offer greater convenience to the users, the system is prototyped on the Web so 
that the users can access the system with existing web-browser software. 
 
The application logic layer activates model logic based on the functionality presented to the user, 
processes data, and controls the information flow. This is the middle tier in the computer system 
architecture. It aims to bridge the gap between the user interface and the underlying database and 
to hide technical details from the users. 
 
The database layer is responsible for data modeling to store, index, manage, and model 
information for the application. Data needed by the application logic layer are retrieved from the 
database, and the computational results produced by the application logic layer are stored back to 
the database. 
 
Software, Hardware, and Program Structure 
 
The system is primarily a web-based application that is hosted on an Oracle 9i web application 
server. The backend server environment is Linux and the server side scripts are written in Java 
Server Pages (JSP) and JavaBeans. Backend probabilistic calculations are coded in C++ using 
the IMSL library and called through Java Native Interface (JNI). The system uses an Oracle 
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RAMS: Regional Atmospheric Modeling System. http://rams.atmos.colostate.edu/ 
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R.L. Walko, C.J. Tremback, “RAMS: regional atmospheric modeling system, version 4.3/4.4 - 
Introduction to RAMS 4.3/4.4.”  
http://www.atmet.com/html/docs/rams/ug44-rams-intro.pdf 
 
RMS home page. http://www.rms.com 
 
The JDBC API Universal Data Access for the Enterprise.  
http://java.sun.com/products/jdbc/overview.html 
 
The Interactive Data Language. http://www.rsinc.com/idl/ 
 
Track of hurricane Andrew (1992) (Source from NOVA). 
http://www.pbs.org/newshour/science/hurricane/facts.html 
 
Tropical cyclone heat potential: http://www.aoml.noaa.gov/phod/cyclone/data/ 
 
The Ptolemy Java Applet package. 
http://ptolemy.eecs.berkeley.edu/papers/99/HMAD/html/plotb.html 
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external damage costing scheme; interior damage cost coefficient; number of windows in 
open layout. 
 
2. A list of all other changes, and 

 
No other changes are reported. 

  
3. The rationale for each change. 
 
 

Meteorological Component 
 

 Change made to update to the latest HURDAT (5/14/2012) and to take advantage of new 
observations of Rmax  that have recently become available for storms that have occurred 
up to the 2010 hurricane season. 
 

 Updated centroid locations as per Standard G-3. 
 

 Changed hurricane marine PBL height in terrain conversion model to be the same as in 
the wind model. 
 

 
Vulnerability Component 

 
Personal Residential Model Changes: 

 
 The capacity of the metal roof option was upgraded for strong models and retrofitted 

weak and medium models. The metal roof capacity is a representative of modern metal 
roof product and installation, and thus highly resilient to wind loads. The roof decking 
nailing schedule required for the application of metal roofs was employed concurrently, 
rendering models with metal roofs stronger in both roof cover and roof decking capacity. 
This modification was made to allow model variations to reflect the most recent exposure 
study results (Datin et al. 2011). 
 

 Metal panel window protection is now the default for the shutter-on option for strong 
models in HVHZ and WBDR, while plywood is employed for weak and medium models, 
and for inland structures. This reflects the code requirement for new construction in 
HVHZ and WBDR. Inland structures are not required to have window protection, thus 
those structures are more likely to employ plywood (FBC 2010).  

 
 The strong model was updated to include an upgraded (modified) strong option. This 

variation has an increased capacity of roof to wall connections, roof sheathing and roof 
cover relative to the strong model in the 4.1 submission. This reflects current FBC 
requirements for sheathing nailing schedule, roof to wall connection products, and 
shingle products for HVHZ (FBC 2010, Datin et al. 2011, Simpson Strong Tie 2011).  
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 The window pressure capacities for strong models were upgraded based on manufacturer 
design specifications and test pressures (FBC 2010). 
 

 The definition of the WBDR boundaries were updated based on the latest FBC definition 
(FBC 2010). 
 
The footprint options for the physical damage matrix simulation model were consolidated 
into a single timber frame and single masonry footprint. The previous version used four 
footprints (south concrete block, south timber, north concrete block, north timber). This 
version uses a single timber footprint (the north model) and a single concrete block 
footprint (the south model).  This change was based on the relative distribution of concrete 
block and timber construction in the north and south, respectively. 
 

 The life cycle duration (time between re-roofing) was changed from 20 to 30 years.  This 
is a reflection of the longer replacement cycle for metal roofs, and field studies that 
indicate homeowners are reluctant to follow the recommendation to replace shingle roofs 
on a 20 year cycle. 
 

 
For LR CR: 
 

 Physical modeling of soffit wind damage was added to offer more refinement of the rain 
water ingress modeling.  
 

 Plywood shutters were replaced with metal shutters. Based on current code requirements 
metal shutters are a more realistic choice for HVHZ and WBDR (FBC 2010).   
 

 Updated the debris and pressure protection factors offered by metal shutters. The 
probability of window damage from either debris impact or pressure is reduced with the 
employment of shutters. The reduction for debris was modified to reflect the prevalence 
of shingle roof neighborhoods, where metal shutters provide excellent protection 
(Fernandez et al., 2010). The reduction for pressure damage was modified to reflect the 
observations from post-storm investigations that indicate a reduction in pressure damage 
on windows protected by metal shutters. 
 

 A metal roof option was added for strong models to broaden the representation of the 
building inventory. 

 
 The debris impact model was updated by the employment of a trajectory model to track 

the flight of roof cover debris impacting neighboring structures (Baker 2007, Kordi and 
Kopp 2009). As a result, the probability of impact on a given window is now a function 
of the floor that window is on, and total height of the building and surrounding buildings. 
This modification was made as a leveraged opportunity, whereby a debris trajectory 
study was funded by the Florida Building Commission, and results adapted to this model. 
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 The adjustment factors in the rain damage model were modified, to achieve a more 
realistic simulation of the rain structure interaction.   The modifications reflect the fact 
that any breach and defect can change from leeward to windward or vice versa during the 
duration of the storm due to the rotation of the hurricane winds. 
 

 In v4.1, the wind speed was assumed constant with height in the rain model.  In version 
5.0, the wind speeds variation with height in the rain model follows a more realistic 
logwind profile, in accordance with accepted wind engineering practice and to be 
consistent with the wind speed variation in the Monte Carlo damage simulations (Simiu 
and Scanlan 1996). 
 

 The costing model was extensively upgraded based on input with contractors, and 
comparisons with RSMeans.  The unit costs are more realistic, and better adapted to the 
market conditions in Florida.  The unit costs are now a function of the size of the repairs, 
and of the height of the building. 
 

 The capacities of wall sheathing (timber frame structures) were updated to reflect wall 
nailing schedules in the FBC (FBC 2010, Datin et al. 2011). 

 
 The window pressure capacities for strong models were upgraded based on manufacturer 

specifications of design and test pressures (FBC 2010). 
 

 The roof pressure coefficients on hip roof buildings were adjusted based on literature that 
shows Cp lower on hip roofs than ASCE suggests (Meecham et al. 1991, Meecham 
1992). The change was made to bring this aspect of the model up to the current state of 
knowledge on wind loading. 

 
 The relationship between Cp values in ASCE and those applied to the model to calculate 

wind loads have been changed to reflect the current implementation in the personal 
residential model. This change was made to resolve a difference in the frames of 
reference used in ASCE and the model. ASCE Cp values are conservatively based on a 
low probability of exceedence of a peak Cp value, while the model Cp values are intended 
to represent a typical Cp value rather than an extreme value. 

 
 Roof to wall capacities have been adjusted upward for all LR CR models to reflect the 

additional load sharing available on buildings larger than PR footprints (Morrison et al. 
2012). The additional load sharing effectively reduces the load on the connections, which 
was modeled by increasing capacity rather than reducing load. 
 

 Roof to wall damage for hip roof buildings is post-processed to remove non-monotonic 
behavior. This behavior is an artificial artifact associated with the reduction in connection 
uplift as sheathing loss increases at higher winds. 

 
 The masonry wall capacity algorithm was updated to delineate bending and shear failure 

modes. The failure modes were separated to better distinguish potential wall collapse 
(bending failure mode) and wall cracking (shear failure mode). 
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For MH CR 
 

 The debris impact model was expanded to include three levels of impact probability (low, 
medium and high). This was done to accommodate the probability of debris impact as a 
function of the height of the residence unit. 
 

 Options with or without sliding doors were created, where an additional window is added 
when sliding door option is off 

 
 The interaction of impacting debris and opening failures was updated. Doors and 

windows may be impacted and require repair/replacement, but the impact may or may not 
result in a breach and resultant internal pressure change. In the event of an impact, the 
model now separately evaluates the probability of damage and the probability of breach. 
This modification was made to reflect the observation that debris may a) impact, damage 
(incurring repair or replacement cost) but not breach, or b) impact, damage and breach 
the opening. Breached openings result in both internal pressurization and a path for wind 
driven rain ingress and resultant additional internal losses. 

 
 Adjustments were made to the pressure capacities for all openings. This was done to 

reflect the design and test pressures reported by fenestration manufacturers.  
 

 The costing algorithm for external damage to the openings was changed.  The model does 
not produce any more vulnerability curves for apartment units, but instead produces 
vulnerability curves for the different types of opening within a unit.  These vulnerability 
curves directly yield the number of openings damaged at every story, which are then 
multiplied by the opening replacement costs. 
 

 The interior cost coefficient is now a function of the height and size of the building in 
addition to being also a function of the type of layout (open or closed) and type of 
property (condo vs. apartment building). 

 
 The number of windows per apartment units was increased in the case of an open layout 

building, to reflect the fact that in general they will have more windows than for similar 
units in a closed layout.  
 

B. Percentage difference in average annual zero deductible statewide loss costs for: 
 
1. All changes combined, and 
 

Overall statewide percentage changed in loss cost is a decrease of -7.35%. 
 

2. Each individual model component change. 
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Meteorological Component 
 

The estimated change in statewide loss costs due to the updated probability distribution functions 
in the storm track generator (updated Rmax and HURDAT) is a 2.35% increase. The estimated 
change in statewide loss costs due to updated ZIP code centroids is a 0.63% decrease. The 
estimated change in statewide loss costs due to the modification of the hurricane PBL height is 
approximately a 2.37% decrease.  The overall change in loss costs resulting from meteorological 
component is -.73%. 
 

Vulnerability Component 
 
The combined statewide percentage change in loss costs due to all the changes in the personal 
residential model is an approximate 3.69 % decrease. 
 
The combined statewide percentage change in loss costs due to all the changes in the  
commercial residential model is an approximate 19.07% decrease. 
 
The overall change in loss costs resulting from the vulnerability component is -6.6%. 
 
It is not possible to apply each of the individual model component changes reported above by 
themselves into version 5.0 to isolate any change in losses due to each change alone. The best 
and most meaningful compromise was to evaluate the influence on the overall losses of all the 
changes together in version 5.0. 

 
C. For any modifications to Form A-4 since the initial submission, additional versions of 

Form A-5: 
 
1. With the initial submission as the baseline for computing the percentage 

changes, and 
 
2. With any intermediate revisions as the baseline for computing the percentage 

changes. 
 

D. Color-coded maps by county reflecting the percentage difference in average annual 
zero deductible statewide loss costs for each model component change: 
 

1. Between the previously accepted submission and the revised submission, 
 

2. Between the initial submission and the revised submission, and 
 

3. Between any intermediate revisions and the revised submission. 
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Figure 20. Personal residential and commercial residential county wide percentage change due to 

update of probability distribution functions. 
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Figure 21. Personal residential and commercial residential county wide percentage change due to 

update of ZIP code centroids. 
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Figure 22. Personal residential and commercial residential county wide percentage change due to 

change in hurricane PBL height. 
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Figure 23.  County wide percentage change due to vulnerability functions personal residential model. 
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Figure 24. County wide percentage change due to new vulnerability functions commercial residential 

model. 
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Florida International University
(FIU)

Lead University

National Oceanic and Atmospheric 
Administration Hurricane Division 

(NOAA/HRD)

University of Florida 
(UF)

Florida Institute of 
Technology

(FIT)

Florida State 
University
(FSU)

University of 
Miami (UM)

Office of Insurance Regulation
(OIR)

Funding Agency
Clients

Insurance Companies ‐ clients

AMI Risk 
Consultants

 
Figure 25. Organizational structure. 

 
The Florida Office of Insurance Regulation (OIR) contracted and funded Florida International 
University to develop the Florida Public Hurricane Loss Model. The model is based at the 
Laboratory for Insurance, Financial and Economic Research, which is part of the International 
Hurricane Research Center at Florida International University. The OIR did not influence the 
development of the model. The model was developed independently by a team of professors, 
experts, and graduate students working primarily at Florida International University, Florida 
Institute of Technology, Florida State University, University of Florida, Hurricane Research 
Division of NOAA,  University of Miami, and AMI Risk Consultants. The copyright for the 
model belongs to OIR. 
 

C. If the model is developed by an entity other than a modeling company, describe the 
funding source for the model. 

 
The model was funded by the state legislature at the request of the Florida Office of Insurance 
Regulation.  
 

D. Describe the modeling organization’s services. 
 
Until 2008 the modeler provided services to only one major client, the FL-OIR. Effective 
January 2009 the modeler is providing services to the firms and organizations in the insurance 
and reinsurance industries. It has expanded the infrastructure and computational capacity to 
handle the added load. 
 



FPHLM V5.0

 

The first 
the limite
of estima
that was 
 
The next
meteorol
was impl
on behalf
 
In summ
Commiss
revised a
updated v
latest upd
2011. 
 

E. In
ch
m
di

 
None. 
 

 P2.
 

A. P
(b
an
an

1.
2.
3.
4.
5.

 
See below

Key Per

Meteorolo

Dr. Mark Po

Dr. Steve C

0 2013 

version of th
ed data avail
ating loss co
never imple

 version of t
logical, engin
lemented in 
f of the Flori

er 2007 a rev
sion on Hurr
and updated v
version of th
dated version

ndicate if th
hallenged by

model versio
disputed. Des

Professional 

Provide in a 
b) employme
nd responsi
ny of the fol

. Meteorolo

. Vulnerab

. Actuarial

. Statistics 

. Computer

w. 

rsonnel 

ogy:   

owell Ph.D

Cocke Ph.D

he model wa
lable prior to
sts for insura
mented. 

the model wa
neering, and
March 2006
ida Office of

vised and up
ricane Loss P
version, 3.0,

he model wa
n of the mod

he modeling
by a statutor
ons for proj
scribe the na

Credentials

chart form
ent or consu
ibilities of in
llowing aspe

 
ogy 

bility 
l Science 

r Science 

T

Degree/ 
Discipline 

D. Meteorology 

D. Physics 

as completed
o the 2004–2
ance compan

as developed
d insurance c
6. This versio
f Insurance R

pdated versio
Projection M
, was accepte

as 3.1, which
del is 4.1, wh

g organizatio
ry authority 
jection of l
ature of each

s 

at (a) the h
ultant status
ndividuals c
ects of the m

Table 10. Pro

University

  

Florida State 
University 

Univ. Texas 
Austin 

119 

d in May 200
2005 hurrica
ny exposure

d upon the a
claim data fro
on was used 
Regulation.

on of the mo
Methodology
ed by the Co

h was accepte
hich was acc

on has ever
where the 

loss costs o
h case and i

ighest degre
s and tenur

currently inv
model: 

 
ofessional cre

Employm

  

Senior Atmo
Scientist HR

Scholar/Scie
Dept of Met

05 and was b
ane seasons. 
s. Essentiall

acquisition of
om the 2004
to process th

odel, 2.6, wa
y and put to i
ommission in
ed by the Co
cepted by the

r been invol
credibility o

or probable
its conclusio

ee obtained 
re in years, 
volved in the

edentials. 

ment Status 

ospheric 
RD/NOAA 

entist FSU, 
teorology 

based on the
It was not u

ly, it was an 

f a limited a
4–2005 hurri
the insurance

as accepted b
immediate u
n June 2008
ommission in
e Commissio

lved directly
of one of its
e maximum 
on. 

d (discipline 
and (c) rele
e acceptabil

Tenure 

    

33 
Me
mo

16 
Me
inte
mo

e knowledge
sed for purp
internal mod

amount of 
icane events
e company d

by the Florid
use. Another 
. The next 
n June 2009
on in Augus

y in litigatio
s U.S. hurri

loss levels

and Univer
evant experi
lity process 

Experience

eteorology wind fi
odel 

eteorology track, 
ensity, roughness 

odels 

 and 
poses 
del 

 and 
data 

da 

. The 
t 

on or 
icane 
s was 

rsity), 
rience 

or in 

eld 



FPHLM V5.0 2013 

120 
 

Key Personnel 
Degree/ 

Discipline 
University Employment Status Tenure Experience 

Bachir Annane 
M.S. Meteorology,  
M.S. Mathematics 

Florida State 
University 

Meteorologist, Univ. of 
Miami 

18 Meteorology 

Neal Durst B.S. Meteorology 
Florida State 
University 

Meteorologist, 
HRD/NOAA 

28 Meteorology 

Engineering:           

Dr. Jean-Paul Pinelli 
Ph.D. Civil 
Engineering 

Georgia Tech 
Professor, CE Florida 
Institute of Technology 

16 
Wind engineering, 
vulnerability functions 

Dr. Kurt Gurley 
Ph.D. Civil 
Engineering 

University of 
Notre Dame 

Associate Professor, CE 
University of Florida 

13 
Wind engineering, 
simulations 

Dr. Gonzalo Pita 
Ph.D. Civil 
Engineering 

Florida Institute 
of Technology 

Post Doc John Hopkins 
University 

9 
Wind engineering, 
vulnerability functions 

Timothy Johnson 
B.S. Civil 
Engineering 

Florida Institute 
of Technology 

M.S. candidate (FIT) 2 
Wind engineering, 
vulnerability functions 

Johann Weekes 
M.S. Civil 
Engineering 

University of 
Florida 

Ph.D. Candidate (UF Civil) 6 
Wind and structural 
engineering 

Steven Bell 
B.S. Civil 
Engineering 

Florida Institute 
of Technology 

M.S. candidate (FIT) 1 
Wind engineering, 
vulnerability functions 

Actuarial/Finance:           

Dr. Shahid Hamid          
Project Manager, PI 

Ph.D. Economics 
(Financial), CFA 

University of 
Maryland 

Professor of Finance 
Florida International 
University 

22 Insurance and finance 

Gail Flannery FCAS, Actuary CAS VP, AMI Risk Consultants 28 
Reviewer, demand surge, 
actuarial analysis 

Aguedo Ingco  FCAS, Actuary CAS 
President, AMI Risk 
Consultants 

38 Reviewer, demand surge 

Nino Joseph Paz BS Statistics 
University of 
Philippines-
Diliman 

Actuarial supervisor, AMI 
Risk Consultants 

2 Actuarial consulting 

Computer Science           

Dr. Shu-Ching Chen 
Ph.D. Electrical and 
Computer 
Engineering 

Purdue 
University 

Professor of Computer 
Science at FIU 

12 
Software and database 
development 

Dr. Mei-ling Shyu 
Ph.D. Electrical and 
Computer 
Engineering 

Purdue 
University 

Associate Professor of 
Electrical and Computer 
Engineering at University 
of Miami 

12 Software quality assurance 

Fausto Fleites 
B.S. Computer 
Science 

Florida Int’l 
University 

Ph.D. Student FIU 10 
Software development and 
database development 

Hsin-Yu Ha 
B.S. Information 
Management 

Chang Gung 
University 

Ph.D. Student FIU 6 Data processing 

Yimin Yang 
M.S. Electrical 
Engineering 

Xidian 
University 

Ph.D Student FIU 3 Software development 

Raul Garcia 
Computer Science 
Undergraduate 
Student 

Florida 
International 
University 

Undergraduate Student FIU 2 
Software and database 
development 

Diana Machado 
Computer Science 
Undergraduate 
Student 

Florida 
International 
University 

Undergraduate Student FIU 1 
Software and database 
development 

Dianting Liu 
Ph.D. Mechanical 
Engineering  

Dalian 
University of 
Technology 

Ph.D. Student UM 1 Data processing 

Roberto Aleman 
B.S. Computer 
Science 
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International 
University 

M.S. Student FIU 1 Web development 

Alex Sarracino 
Computer Science 
Undergraduate 
Student 
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International 
University 

Undergraduate Student FIU 1 
Data processing and 
software development 
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Key Personnel 
Degree/ 

Discipline 
University Employment Status Tenure Experience 

Laura Alonso 

Information 
Technology 
Undergraduate 
Student 

Florida 
International 
University 

Undergraduate Student FIU 1 Data processing 

Statistics           

Dr. S. Gulati Ph.D. Statistics 
University of 
South Carolina 

Professor, Statistics, FIU 17 
Statistical tests and 
nonparametric analysis 

Dr. B. M. Golam 
Kibria 

Ph.D. Statistics 
University of 
Western Ontario 

Associate Professor of 
Statistics at FIU 

12 
Statistical testing and 
sensitivity analysis 

Technical Editor      

 Teresa Grullon 
Financial 
Certification 

Institute of 
Financial 
Education 

Administrative Assistant, 
FIU 

23 
Administrative, 
Accounting, technical 
editing  

 
 

B. Identify any new employees or consultants (since the previous submission) working on 
the model or the acceptability process. 

 
Raul Garcia, Diana Machado, Teresa Grullon, Steven Bell, Dianting Liu, Roberto Aleman, Alex 
Sarracino, Laura Alonso. 
 

C. Provide visual business workflow documentation connecting all personnel related to 
model design, testing, execution, maintenance, and decision-making. 
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Figure 26. Florida Public Hurricane Loss Model workflow. 
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G-4 Independence of Model Components 
 
The meteorological, vulnerability, and actuarial components of the model shall 
each be theoretically sound without compensation for potential bias from the 
other two components.  
 
The meteorology, vulnerability, and actuarial components of the model are theoretically sound 
and were developed and validated independently before being integrated. The model components 
were tested individually.  
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from a functional marine form to a constant based on a mean aerodynamic roughness length of 
0.2 m. The slab boundary layer height increases from 450 m to 1 km after the center makes 
landfall and decreases back to 450 m if the center exits land to go back to sea. 
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M-3 Hurricane Probabilities 
 
A. Modeled probability distributions of hurricane parameters and characteristics 

shall be consistent with historical hurricanes in the Atlantic basin.  
 
Hurricane motion (track) is modeled based on historical geographic probability distributions of 
hurricane translation velocity and velocity change, initial intensity, intensity change, and 
potential intensity. Modeled probability distributions for hurricane intensity, forward speed, 
Rmax, and storm heading are consistent with historical hurricanes in the Atlantic basin. 
 
B. Modeled hurricane landfall frequency distributions shall reflect the Base 

Hurricane Storm Set used for category 1 to 5 hurricanes and shall be 
consistent with those observed for each coastal segment of Florida and 
neighboring states (Alabama, Georgia, and Mississippi).   

 
As shown in Form M-1 and the accompanying plots, our model reflects reasonably the 1900–
2011 Base Hurricane Set for hurricanes of Saffir-Simpson Categories 1–5 in each coastal region 
of Florida, as well as in the neighboring states. In addition, a finer scale coastal milepost study of 
model parameters (occurrence rate, storm translation speed, storm heading, and Pmin) was 
conducted during the development of the model. 
 
C. Models shall use maximum one-minute sustained 10-meter windspeed when 

defining hurricane landfall intensity.  This applies both to the Base Hurricane 
Storm Set used to develop landfall frequency distributions as a function of 
coastal location and to the modeled winds in each hurricane which causes 
damage.  The associated maximum one-minute sustained 10-meter windspeed 
shall be within the range of windspeeds (in statute miles per hour) categorized 
by the Saffir-Simpson Scale. 

 
Saffir-Simpson Hurricane Scale:  
 

Category Winds (mph) Damage 

1 74 – 95 Minimal 

2   96 – 110 Moderate 

3 111 – 130 Extensive 

4 131 – 155 Extreme 

5 Over 155 Catastrophic 

 
The HRD wind field model simulates landfall intensity according to the maximum one-minute 
sustained wind for the 10 m level for both stochastic simulations and the Base Hurricane Set. 
The Saffir-Simpson damage potential scale is used to further categorize the intensity at landfall, 
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M-4 Hurricane Windfield Structure 
 
A. Windfields generated by the model shall be consistent with observed 

historical storms affecting Florida. 
 
As described in Statistical Standards S-1, Disclosure 2, comparisons of FPHLM to gridded 
H*Wind fields indicate that the FPHLM wind fields are consistent with observed historical wind 
fields from Florida landfalling hurricanes. 
 
B. The translation of land use and land cover or other source information into a 

surface roughness distribution shall be consistent with current state-of-the-
science and shall be implemented with appropriate geographic information 
system data. 

 
Land friction is modeled according to the currently accepted, state-of-the-science principles of 
surface layer similarity theory as described in the disciplines of micrometeorology, atmospheric 
turbulence, and wind engineering. The geographic distribution of surface roughness is 
determined by careful studies of aerial photography and satellite remote sensing measurements 
used to create land use-land cover classification systems. We use the MRLC NLCD 2001 land 
use dataset as well as the Statewide 2004 Land Use/Land Cover dataset developed and 
maintained by the Florida Water Management Districts (WMD) and compiled and distributed by 
the Florida Department of Environmental Protection. The NLCD dataset became available in 
Spring 2007 and provides detailed (30 m) land use characteristics circa 2001. The datasets of the 
individual water management districts were recently combined in the statewide WMD dataset to 
form a unified dataset. The WMD data are based on 2004 imagery. We have developed a 
roughness dataset at 90 meter resolution covering the state of Florida to enable modeling losses 
at the "street level." For modeling losses at the ZIP Code level, we use population-weighted 
roughness. 
 
All street level locations (at 90 m resolution) and population-weighted ZIP Code centroids are 
assigned roughness values as a function of upstream fetch for each wind direction octant. After 
landfall, the surface drag coefficient used in the hurricane PBL slab model changes from a 
marine value to a fixed value associated with a roughness of 0.2 m. 
 
C. With respect to multi-story structures, the model windfield shall account for 

the effects of the vertical variation of winds if not accounted for in the 
vulnerability functions. 

 
The modeled wind fields take into account vertical variation through the new terrain conversion 
methodology based on Vickery et al. (2009). The coastal transition function also takes into 
account variation of wind with height. 
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Spatial variations of roughness on the order of a few miles can cause large differences in the 
wind on that spatial scale. 
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Figure 35. Observed (green) and modeled (black) maximum sustained surface winds as a function of 
time for Hurricanes Jeanne (2004, top left), Katrina (2005 in South Florida, top right), and Wilma 

(2005, lower left).  Landfall is represented by the vertical dash‐dot red line at the left and time of exit 
as the red line on the right. 
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For historical hurricane tracks the landfall pressure is determined from HURDAT or from the Ho 
et al. (1987) report. If post-landfall pressure data are available in HURDAT, we interpolate 
pressure values over land. If post-landfall pressure data are not available, we apply the Vickery 
(2005) pressure decay model to the landfall pressure. After the storm exits land, the pressure is 
based on HURDAT data. Therefore, decay rates for historical hurricanes are based on HURDAT 
data if available, or the Vickery decay rate model applied to the HURDAT or Ho et al. (1987) 
landfall Pmin, and decay rates for stochastic hurricanes are based on Vickery (2005). 
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Form M-1: Annual Occurrence Rates 
 
A. Provide annual occurrence rates for landfall from the dataset defined by marine exposure 

that the model generates by hurricane category (defined by maximum windspeed at landfall 
in the Saffir-Simpson scale) for the entire state of Florida and selected regions as defined in 
Figure 3 [of the 2011 ROA].  List the annual occurrence rate per hurricane category.  
Annual occurrence rates shall be rounded to two decimal places.  The historical frequencies 
below have been derived from the Base Hurricane Storm Set as defined in Standard M-1.   

 
Form M-1 follows. The historical counts are determined primarily from HURDAT impact (or 
“trailer”) codes for the storms, but in some cases the intensities are based on the HURDAT 6 h 
wind reports near landfall. A report detailing the counts will be available for review. 
 
Statewide counts are determined using two different methods. Under the heading “Entire State,” 
we provide the counts using the most intense landfall for each storm affecting Florida; that is, 
there is only one landfall per storm.  Under the heading “Entire State Landfalls,” we provide the 
counts of all landfalls for each storm, using only one storm per region. This table is the sum of 
the counts for Regions A–D.  
  



FPHLM V5.0 2013
 

 

Form M-1. Modeled Annual Occurrence Rates   
 

 Entire State Region A – NW Florida 
 Historical Modeled Historical Modeled 

Category Number Rate Number Rate Number Rate Number Rate 
1 24 0.21 27.02 0.24 14 0.13 14.58 0.13 
2 13 0.12 13.75 0.12 5 0.04 5.78 0.05 
3 17 0.15 13.84 0.12 6 0.05 4.40 0.04 
4 7 0.06 7.52 0.07 0 0 1.80 0.02 
5 2 0.02 2.39 0.02 0 0 0.21 0 
 Region B – SW Florida Region C – SE Florida 
 Historical Modeled Historical Modeled 

Category Number Rate Number Rate Number Rate Number Rate 
1 8 0.07 8.02 0.07 6 0.05 7.43 0.07 
2 1 0.01 4.91 0.04 6 0.05 4.05 0.04 
3 6 0.05 4.95 0.04 6 0.05 5.00 0.04 
4 2 0.02 2.19 0.02 5 0.04 3.73 0.03 
5 1 0.01 0.43 0 1 0.01 1.80 0.02 
 Region D – NE Florida Florida By-Passing Hurricanes 
 Historical Modeled Historical Modeled 

Category Number Rate Number Rate Number Rate Number Rate 
1 1 0.01 1.28 0.01 6 0.05 5.66 0.05 
2 2 0.02 0.72 0.01 4 0.04 2.89 0.03 
3 0 0 0.64 0.01 4 0.04 2.97 0.03 
4 0 0 0.17 0 1 0.01 1.24 0.01 
5 0 0 0.02 0 0 0 0.80 0.01 
 Region E – Georgia Region F – Alabama/Mississippi 
 Historical Modeled Historical Modeled 

Category Number Rate Number Rate Number Rate Number Rate 
1 3 0.03 1.48 0.01 6 0.05 5.05 0.05 
2 0 0 0.42 0 2 0.02 2.68 0.02 
3 0 0 0.26 0 3 0.03 2.72 0.02 
4 0 0 0.19 0 1 0.01 0.98 0.01 
5 0 0 0.06 0 1 0.01 0.62 0.01 
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Form M-1 continued  
 

 Entire State Landfalls
 Historical Modeled

Category Number Rate Number Rate 
1 29 0.26 31.30 0.28 
2 14 0.13 15.46 0.14 
3 18 0.16 14.99 0.13 
4 7 0.06 7.88 0.07 
5 2 0.02 2.46 0.02 

 
 
B. Describe model variations from the historical frequencies. 
 
Form M-1 landfall frequencies were determined from the impact codes listed in the “trailer” 
information provided in the HURDAT database. In some cases the HURDAT codes did not 
agree with the 6 h HURDAT information. We revised some landfall intensities indicated by the 
codes based on HURDAT 6 h winds near landfall.  
 
The modeled frequencies are consistent with the historical record, to the extent that we may 
consider the historical record reliable. Statewide, the model produces 72.1 Florida landfalls (64.5 
storms) in 112 years, compared to 70 landfalls (63 storms) historically. For major (Category 3–5) 
storms, the model produces 25.3 landfalls, compared to about 27 landfalls historically. 
 
On a regional basis, the model is also consistent with the historical record. In Part C below we 
show bar charts for each region.  The bar charts show reasonable agreement between the 
modeled and historical frequencies.  Goodness of fit tests have been performed and indicate that 
the model results are consistent with the historical record.  These tests will be available for 
review.  
 
C. Provide vertical bar graphs depicting distributions of hurricane frequencies by category by 

region of Florida (Figure 3 [of the 2011 ROA]) and for the neighboring states of 
Alabama/Mississippi and Georgia. For the neighboring states, statistics based on the closest 
milepost to the state boundaries used in the model are adequate. 

 
Vertical bar charts are shown in the figure below. These charts show the number of hurricanes in 
a 112- year period. Note that there are two charts for Florida statewide hurricanes. The “FL 
Landfalls” chart shows the total number of landfalls in the state (basically the sum of Regions A–
D), whereas the “FL Hurricanes” chart shows only the number of hurricanes making at least one 
landfall, and the intensity is the maximum intensity landfall in the case of multiple landfalls. 
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intensity or region impacted: 1926 #7, 1926 #10, 1929 #2, 1932 #3, 1935 #3 and 1935 #7. 
 
F. Provide this form in Excel format. The file name shall include the abbreviated name of the 

modeling organization, the standards year, and the form name. A hard copy of Form M-1 
shall be included in a submission appendix. 

 
The form is provided in Excel format and is included above. 
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Form M-2: Maps of Maximum Winds  
 
A. Provide color maps of the maximum winds for the modeled version of the Base Hurricane 

Storm Set for land use as set for open terrain and land use as set for actual terrain as defined 
by the modeling organization. 

 
B. Provide color maps of the maximum winds for a 100-year and a 250-year return period from 

the stochastic storm set for both open terrain and actual terrain.  
 
C. Provide the maximum winds plotted on each contour map and plot their location. 
 
“Actual terrain” is the roughness distribution used in the standard version of the model.  “Open 
terrain” uses the same roughness value of 0.03 meters at all land points. 
 
All maps shall be color coded at the ZIP Code level. 
 
Maximum winds in these maps are defined as the maximum one-minute sustained winds over the 
terrain as modeled and recorded at each location.   
 
The same color scheme and increments shall be used for all maps. 
 
Use the following seven isotach values and interval color coding: 
 
 50 mph  Blue 
 65 mph  Medium Blue 
 80 mph  Light Blue 
 95 mph  White 
 110 mph Light Red 
 125 mph Medium Red 
 140 mph Red 
 
Contouring in addition to these isotach values may be included. 
 

Maximum and Minimum Values for Form M-2 Figures 
 

Below the maximum and minimum values for the Form M-2 contour maps are 
provided. In some cases the maximum or minimum value may occur at multiple 
locations. 

 
Figure 37 (M-2A Open Terrain) 

 
  max: 133 mph at 33036, 33156. 
  min: 67 mph at 32648, 32628, 32066, 32064, 32060. 
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Figure 38 (M-2A Actual Terrain) 
 

  max: 137 mph at 33036. 
  min: less than 50 mph(*) at 32696, 32693, 32680, 32669, 32653, 32643, 32628, 
       32626, 32621, 32619, 32618, 32607, 32359, 32356, 32350, 32348, 32347, 32344, 
       32340, 32336, 32331, 32317, 32311, 32308, 32305, 32301, 32215, 32212, 32096, 
       32094, 32091, 32087, 32071, 32066, 32064, 32062, 32061, 32060, 32059, 32058, 
       32055, 32053, 32052, 32046, 32038, 32025, 32024, 32013, 32008. 
 
Figure 39 (upper, M-2B 100 yr Open Terrain) 
  max: 109 mph at 33010, 33012, 33013, 33016, 33023, 33030, 33031, 33032, 33033, 
       33034, 33035, 33037, 33039, 33054, 33056, 33070, 33109, 33122, 33125, 33126, 
       33127, 33128, 33129, 33130, 33131, 33132, 33133, 33134, 33135, 33136, 33137, 
       33138, 33139, 33140, 33141, 33142, 33143, 33144, 33145, 33146, 33147, 33149, 
       33150, 33154, 33155, 33156, 33157, 33158, 33160, 33161, 33162, 33165, 33166, 
       33167, 33168, 33169, 33170, 33172, 33173, 33174, 33175, 33176, 33177, 33179, 
       33181, 33183, 33184, 33185, 33186, 33187, 33189, 33190, 33193, 33194, 33196, 
       33199. 
  min: 72 mph at 32350, 32053, 32052. 
 
Figure 39 (lower, M-2B 250 yr Open Terrain) 
 
  max: 119 mph at 33060, 33062, 33064, 33304, 33306, 33308, 33309. 
  min: 81 mph at 32350, 32053. 
 
Figure 40 (upper, M-2B 100 yr Actual Terrain) 
 
  max: 109 mph at 33050, 33109. 
  min: less than 50 mph(*) at 32352, 32350, 32343, 32340, 32336, 32234, 32215, 
       32096, 32087, 32064, 32061, 32060, 32059, 32053, 32052, 32046, 32009. 
 
Figure 40 (lower, M-2B 250 yr Actual Terrain) 
 
  max: 123 mph at 33036. 
  min: 51 mph at 32215. 
 
(*) Winds below 50 mph were not retained for this calculation. Therefore, the 
precise value for the minimum cannot be calculated. 
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Form M-3: Radius of Maximum Winds and Radii of Standard Wind 
Thresholds 
 
A. For the central pressures in the table below, provide the minimum and maximum values for 

1) the radius of maximum winds (Rmax) used by the model to create the stochastic storm set 
and minimum and maximum values for the outer radii (R) of 2) Category 3 winds (>110 
mph), 3) Category 1 winds (>73 mph), and 4) gale force winds (>40 mph).  This 
information should be readily calculated from the windfield formula input to the model and 
does not require running the stochastic storm set. Describe the procedure used to complete 
this Form. 

 
From the entire set of stochastic track files, 10 sets of track files (totaling 400) were extracted; 
each set was selected on the basis of the central pressure at landfall as listed in Form M-3. The 
tracks were processed and the model output from the range of solutions for all times in each 
track (2600 wind field snapshots) was used to populate the table. Note that the table represents a 
subset of the possible ranges of Rmax because of the selection of landfall tracks close (+/- 0.05 to 
0.5 mb) to the pressure values in the table.  Note that the Rmax values listed also represent model 
wind field snapshots from when the storms are offshore, while Form M-3 “C” (below) is limited 
to values at landfall.  Input Rmax can vary slightly from Rmax determined from the gridded wind 
field because of the effects of translation speed on the wind field and interpolation truncation 
over the 0.1 R/Rmax model grid.  Observed estimates of Rmax and outer wind radii from 
historical Atlantic basin hurricanes are included for comparison in Table 12.  Observational 
estimates are limited by spatial data coverage and availability. 
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Table 11. Range of outer wind radii (sm) as a function of central sea level pressure (mb). 

 

Central 
Pressure 
(mb) 

Rmax  
(sm) 

Outer Radii 
(>110 mph) 

(sm) 

Outer Radii 
(>73 mph)   

(sm) 

Outer Radii 
(>40 mph)   

(sm) 

Min Max Min Max Min Max Min Max 

900 3.52  19.69  8.21 41.80 13.30 78.24  25.03 186.22

910 3.35  20.83  7.82 41.80 12.91 81.86  25.03 211.03

920 3.52  36.04  7.43 66.07 12.12 129.15  24.25 258.21

930 5.19  72.12  10.96 84.85 18.08 199.40  35.62 448.46

940 6.66  91.91  12.11 72.93 20.59 202.85  44.83 433.95

950 7.57  87.32  12.29 69.30 21.34 169.51  47.06 394.28

960 6.14  82.27  8.94 60.36 16.76 144.86  39.68 356.91

970 6.14  81.37  6.14 51.30 12.29 137.32  28.50 367.30

980 6.14  75.11  7.26 29.50 9.83 97.69  24.59 318.57

990 6.14  71.98  NA NA 6.76 76.23  20.12 314.32
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Table 12. Extended Best-Track and H*Wind wind radii ranges based on Atlantic basin hurricanes. 

 
  

Storms 

Ext. Best Track 

(DeMaria 2010) 

Central 
Pressure (mb) 

Rmax 

(sm) 

Outer Radii 
(>110 mph) 

(sm) 

From H*Wind 

Outer Radii 
(>73 mph) 

(sm) 

Outer Radii 
(>40 mph) 

(sm) 

min max min max min max min max 

Katrina, Rita, Wilma 2005 900 6 23 21 Rita 31 Wilma 69 103 102 230 

Mitch 98, Ivan 04, Katrina, Wilma 05 910 14 29 33 Wilma 34.5 Mitch 57 115 172 230 

Isabel 03, Ivan 04, Rita 05, Dean 07 920 11 29 26 Ivan 34.5 Isabel 34 144 161 287 

Andrew 92, Floyd 99, Ivan 04, Dennis 05, 
Dean 07 

930 11 34 22 Andrew 32 Ivan 29 126.5 115 287 

Luis 95, Lili 02, Floyd 99 940 6 40 16Lili 55 Isabel 29 138.0 115 287 

Gabrielle 89, Iris 01, Bret 99 950 6 63 7 Iris 46 Wilma 17 172 98 345 

Gustav 02, Dennis 05, Gilbert 88, Claudette 
01 

960 6 86 13 Gustav n/a 23 161 86 402 

 

Joan 88, Felix 95, Lili 96, Karl 10 970 6 103 6 Karl n/a 17 287 57 621 

Gabrielle 01, Emily 05, Noel 07, Beta 05 980 11 138 n/a n/a 17 144 57 690 

Lili 02, Olga 01, Lisa 04 990 11 207 n/a n/a 17 138.0 34 632 
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D. Provide this form in Excel format. The file name shall include the abbreviated name of the 
modeling organization, the standards year, and the form name. A hard copy of Form M-3 
shall be included in a submission appendix. 

 
The form is provided in Excel format and is included above. 
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VULNERABILITY STANDARDS 
 
V-1 Derivation of Vulnerability Functions 
 
A. Development of the vulnerability functions is to be based on any or a 

combination of the following: (1) historical data, (2) tests, (3) structural 
calculations, (4) expert opinion, or (5) site inspections.  However, any 
development of the vulnerability functions based on structural calculations or 
expert opinion shall be supported by tests, site inspections, and historical 
data.  

The development of the vulnerabilities is based on a component approach that combines 
engineering modeling, simulations with engineering judgment, and observed (historical) data. The 
determination of external damage to buildings is based on structural calculations, tests, and Monte 
Carlo simulations. The wind loads and strength of the building components in the simulations are 
based on laboratory and in-situ tests, manufacturer’s data, expert opinion based on post-hurricane 
site inspections of actual damage, and codes and standards.  The internal and content damage are 
extrapolated from the external damage on the basis of expert opinion and are confirmed using 
historical claims data and site inspections of areas impacted by recent hurricanes. 

B. The method of derivation of the vulnerability functions and their associated 
uncertainties shall be theoretically sound and consistent with fundamental 
engineering principles. 

The method used in the derivation is based on extrapolating the results of Monte Carlo 
simulations of physical exterior damage through simple equations based on engineering 
judgment, expert opinion, and claims data. Uncertainties at each stage are accounted for by 
distributing the damage according to reasonable probability distributions and are validated with 
claims data. 

The Monte Carlo component models take into account many variations in structural 
characteristics, and the result clearly filters through the cost estimation model. There are also 
different and clearly defined costing considerations applied to each structural type. These 
adjustments come directly from resources developed exclusively for defining repair costs to 
structures and therefore are theoretically sound.   

C. Residential building stock classification shall be representative of Florida 
construction for personal and commercial residential properties. 

A detailed exposure study was carried out to define the most significant (prevalent) construction 
types and characteristics in the Florida residential building stock for different regions.  The 
corresponding engineering models were built for each of the identified common structural types. 
In the case of the residential model and the low-rise, commercial residential model, the models 
include differing wall types (wood and masonry) of varying strengths (e.g., reinforced or not, 
various  roof to wall connection types), differing roof shapes (hip and gable end) and their effect 
on uplift loading, various strengths of roof-to-wall connections (toe nail through straps), varying 
window types and sizes, opening protection systems, varying garage door pressure capacities, and 
one and two story houses and one-to-three story commercial residential buildings.  
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Models of varying combinations of the above characteristics (e.g., wood frame, gable end, no 
window shutters) were created for four different regions in Florida. In all cases, the probabilistic 
capacities of the various components were determined by a variety of sources, including testing, 
test results in the literature, in-field data collection (post-hurricane damage evaluations), 
manufacturer’s specifications and manufacturer’s test data, and expert opinion. 

In the case of the mid-/high-rise commercial residential model (buildings with more than three 
stories), the models include different apartment units corresponding to different building layouts 
(interior or exterior entry door), different locations within the floor plan (corner or middle units), 
different heights (subject to different probabilities of missile impact and wind speed), and 
different openings (windows, doors, sliders) with different protection options (none or impact 
resistant).  

D. Building height/number of stories, primary construction material, year of 
construction, location, and other construction characteristics, as applicable, 
shall be used in the derivation and application of vulnerability functions. 

 

The structural models include options that allow the representation of building code revisions. 
Three models were derived for each structural type: weak construction, medium construction, and 
strong construction. For example, each model for wood frame and gable roof homes has weak, 
medium, and strong versions. The assignment of a given strength level is based on the assumed 
age of the home being modeled and the available information on construction practice in that 
region of the state in that era of construction. Florida Building Code requirements that apply to 
the repair of existing homes are also taken into consideration when computing the repair costs of 
a structure. Separate models were also developed for manufactured housing constructed based on 
pre- and post-1994 HUD regulations and for different wind zones. 

In addition to the various models that reflect construction type, region of Florida, and era of 
construction (multiple variations of weak, medium, or strong construction), each model has 
numerous additional strength features that can be adjusted before simulations are conducted to 
represent various combinations of mitigation features. For example, a weak constructed home in 
central Florida with masonry walls (no reinforcing) may have been recently re-roofed with 
renailed roof decking and modern code-approved shingles. The simulation model is capable of 
reflecting this combination of weak original construction and new, strong roof sheathing and roof 
cover mitigation. 

E.  Vulnerability functions shall be separately derived for commercial residential 
building structures, personal residential structures, mobile homes, appurtenant 
structures, contents, and time element coverages. 

  

This requirement is fully met. The building structures, mobile homes, and appurtenant structures 
are independently derived. The contents and time element coverages are separate vulnerabilities, 
which are functions of (receiving input from) the results of structure vulnerability simulations. 

F.  The minimum windspeed that generates damage shall be consistent with 
fundamental engineering principles. 
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Figure 43. Monte Carlo simulation procedure to predict damage. 

 
The flow chart in Figure 44 summarizes the procedure used to convert the results of the Monte 
Carlo simulations of physical external damage into a vulnerability matrix. 
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Figure 444. Procedure 
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The flowchart in Figure 45 is also partially applicable to the apartment facades of the mid-/high-
rise commercial residential model, in which building components modeled include windows, 
entry doors, and balcony (sliding-glass) doors.  In the case of MHB, a process similar to the one 
described above is followed to derive exterior vulnerability and breach curves for different 
openings of typical apartment units. These curves are derived for the cases of open and closed 
buildings, for corner and middle units, with different opening protections (with or without impact-
resistant glass; with or without metal shutters). Each vulnerability curve for openings of corner or 
middle apartment units (window, door, or slider) gives the number or fraction of openings 
damaged as a function of wind speed.  Each breach curve for openings of corner or middle 
apartment units (window, door, or slider) gives the breach area in ft2 of opening damaged as a 
function of wind speed. 
 
The flow chart in Figure 45 summarizes the procedure used to convert the apartment unit opening 
vulnerability and breach curves into an overall estimate of building vulnerability. This figure is 
already presented in Standard G-1, as Figure 17 where the values represented in the flow chart are 
explained in detail. 
 
  



FPHLM V5.0 2013 

185 
 

 

 
Figure 45. Exterior and interior damage assessment for MHB. 
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are divided between Hurricanes Charley, Frances, and Jeanne for central Florida, and Hurricane 
Ivan for the Panhandle. The validation consists of a series of comparisons between the actual 
claim data and the FPHLM results. The claims files were provided by the insurance companies. 
Table 14, Table 15, and Table 16 show the number of policies provided by the two companies for 
the four different hurricanes in 2004. As expected, there are more masonry claims in central 
Florida and more timber claims in the Panhandle.  The claim data for Ivan was not used in the 
validation process because it was contaminated by storm surge damage.  
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Table 14. Company 1: Claim number for each year-build category 

Company Hurricane Construction Year Built Number of Claims  

Company 1 Charley Masonry yb<1970 5026 

Company 1 Charley Masonry 1970<=yb<1984 8216 

Company 1 Charley Masonry 1984<=yb<1994 11850 

Company 1 Charley Masonry yb>=1994 8110 

Company 1 Charley Frame yb<1970 956 

Company 1 Charley Frame 1970<=yb<1984 1232 

Company 1 Charley Frame 1984<=yb<1994 3044 

Company 1 Charley Frame yb>=1994 677 

Company 1 Charley Manufactured yb<1994 2966 

Company 1 Charley Manufactured yb>=1994 212 

Company 1 Frances Masonry yb<1970 5009 

Company 1 Frances Masonry 1970<=yb<1984 6989 

Company 1 Frances Masonry 1984<=yb<1994 7903 

Company 1 Frances Masonry yb>=1994 4384 

Company 1 Frances Frame yb<1970 902 

Company 1 Frances Frame 1970<=yb<1984 2081 

Company 1 Frances Frame 1984<=yb<1994 5648 

Company 1 Frances Frame yb>=1994 721 

Company 1 Frances Manufactured yb<1994 3186 

Company 1 Frances Manufactured yb>=1994 222 

Company 1 Ivan Masonry yb<1970 2029 

Company 1 Ivan Masonry 1970<=yb<1984 2099 

Company 1 Ivan Masonry 1984<=yb<1994 1719 

Company 1 Ivan Masonry yb>=1994 1769 

Company 1 Ivan Frame yb<1970 3048 

Company 1 Ivan Frame 1970<=yb<1984 3956 

Company 1 Ivan Frame 1984<=yb<1994 4829 

Company 1 Ivan Frame yb>=1994 3890 

Company 1 Ivan Manufactured yb<1994 634 

Company 1 Ivan Manufactured yb>=1994 79 

Company 1 Jeanne Masonry yb<1970 3601 

Company 1 Jeanne Masonry 1970<=yb<1984 5274 

Company 1 Jeanne Masonry 1984<=yb<1994 5698 

Company 1 Jeanne Masonry yb>=1994 4999 

Company 1 Jeanne Frame yb<1970 825 

Company 1 Jeanne Frame 1970<=yb<1984 1386 

Company 1 Jeanne Frame 1984<=yb<1994 3430 

Company 1 Jeanne Frame yb>=1994 674 

Company 1 Jeanne Manufactured yb<1994 2717 

Company 1 Jeanne Manufactured yb>=1994 177 
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Table 15. Company 2: Claim number for each year-built category. 

Company Hurricane Construction Year Built Number of Claims 

Company 2 Charley Masonry yb<1970 8677 

Company 2 Charley Masonry 1970<=yb<1984 15085 

Company 2 Charley Masonry 1984<=yb<1994 18324 

Company 2 Charley Masonry yb>=1994 6376 

Company 2 Charley Frame yb<1970 1920 

Company 2 Charley Frame 1970<=yb<1984 1782 

Company 2 Charley Frame 1984<=yb<1994 3786 

Company 2 Charley Frame yb>=1994 443 

Company 2 Charley Manufactured yb<1994 1843 

Company 2 Charley Manufactured yb>=1994 159 

Company 2 Frances Masonry yb<1970 8276 

Company 2 Frances Masonry 1970<=yb<1984 11978 

Company 2 Frances Masonry 1984<=yb<1994 11394 

Company 2 Frances Masonry yb>=1994 3224 

Company 2 Frances Frame yb<1970 1453 

Company 2 Frances Frame 1970<=yb<1984 3202 

Company 2 Frances Frame 1984<=yb<1994 7731 

Company 2 Frances Frame yb>=1994 601 

Company 2 Frances Manufactured yb<1994 1590 

Company 2 Frances Manufactured yb>=1994 131 

Company 2 Ivan Masonry yb<1970 1399 

Company 2 Ivan Masonry 1970<=yb<1984 746 

Company 2 Ivan Masonry 1984<=yb<1994 449 

Company 2 Ivan Masonry yb>=1994 275 

Company 2 Ivan Frame yb<1970 4004 

Company 2 Ivan Frame 1970<=yb<1984 5546 

Company 2 Ivan Frame 1984<=yb<1994 4637 

Company 2 Ivan Frame yb>=1994 2229 

Company 2 Ivan Manufactured yb<1994 171 

Company 2 Ivan Manufactured yb>=1994 41 

Company 2 Jeanne Masonry yb<1970 6907 

Company 2 Jeanne Masonry 1970<=yb<1984 10767 

Company 2 Jeanne Masonry 1984<=yb<1994 9629 

Company 2 Jeanne Masonry yb>=1994 4176 

Company 2 Jeanne Frame yb<1970 1555 

Company 2 Jeanne Frame 1970<=yb<1984 2087 

Company 2 Jeanne Frame 1984<=yb<1994 4561 

Company 2 Jeanne Frame yb>=1994 484 

Company 2 Jeanne Manufactured yb<1994 1401 

Company 2 Jeanne Manufactured yb>=1994 128 
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Table 16. Company 1 and Company 2: Claim numbers combined. 

Company Hurricane Construction Number of Claims 

Company 1 Charley Masonry 33202 

Company 1 Charley Frame 5909 

Company 1 Charley Manufactured 3178 

Company 1 Charley Other 260 

Company 1 Frances Masonry 24285 

Company 1 Frances Frame 9352 

Company 1 Frances Manufactured 3408 

Company 1 Frances Other 566 

Company 1 Ivan Masonry 7616 

Company 1 Ivan Frame 15723 

Company 1 Ivan Manufactured 713 

Company 1 Ivan Other 100 

Company 1 Jeanne Masonry 19572 

Company 1 Jeanne Frame 6315 

Company 1 Jeanne Manufactured 2894 

Company 1 Jeanne Other 331 

Company 2 Charley Masonry 48462 

Company 2 Charley Frame 7931 

Company 2 Charley Manufactured 2002 

Company 2 Charley Other 582 

Company 2 Frances Masonry 34872 

Company 2 Frances Frame 12987 

Company 2 Frances Manufactured 1721 

Company 2 Frances Other 1134 

Company 2 Ivan Masonry 2869 

Company 2 Ivan Frame 16416 

Company 2 Ivan Manufactured 212 

Company 2 Ivan Other 87 

Company 2 Jeanne Masonry 31479 

Company 2 Jeanne Frame 8687 

Company 2 Jeanne Manufactured 1529 

Company 2 Jeanne Other 1167 

 
The claims are divided by the type of coverage for structure and contents. Company 1 has two 
types of coverage, replacement cost and actual cash value, but does not specify whether both 
structure and contents have the same coverage for each claim. 
 
For Company 2, there are six types of coverage, as shown below. 
 
ACV S/ACV C     Structure Actual-Cash-Value, Contents Actual-Cash-Value 
ACV S/RC C     Structure Actual-Cash-Value, Contents Replacement-Cost 
RC S/ACV C     Structure Replacement-Cost, Contents Actual-Cash-Value 
RC S/RC C      Structure Replacement-Cost, Contents Replacement-Cost 
SV S/RC C      Structure Stated-Value, Contents Replacement-Cost 
SV S/SV C      Structure Stated-Value, Contents Stated-Value 
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Table 17a and Table 17b summarize the distribution of claims in both companies. 
 

 
Table 17a. Distribution of coverage for Company 1. 

 

Coverage Premium Policy Count   Claim Policy Count   
A 44020 1% 2759 2% 
R 3706219 99% 163692 98% 
Total 3750240   166451  

 
 

Table 17b. Distribution of coverage for Company 2. 

Coverage Premium Policy Count   Claim Policy Count   
ACV S/ACV C 13173 3% 3496 3% 
ACV S/RC C 44805 10% 12150 9% 
RC S/ACV C 162122 35% 41484 30% 
RC S/RC C 232688 51% 77146 57% 
SV S/RC C 235 0% 69 0% 
SV S/SV C 6019 1% 1717 1% 
Total 459042 100% 136062 100%

 
 
There are 29,372 claims with $0 losses (i.e., Loss structure + Loss app + Loss contents + Loss 
ALE = 0), though they are listed in the claim file of Company 2. They probably correspond to 
claims whose losses were lower than the deductible. 
 
2004 Personal  Residential Claim Data 
 
New claim data for the 2004 hurricane season from a series of insurance companies were also 
used to validate the FPHLM.  Four new insurance companies provided claim data for the 2004 
hurricane season.  They will be referred to as companies PR2 to 5-2004.  Company PR5-2004 has 
only manufactured homes.  See Table PR04a to q. The claim data for Ivan was not used in the 
validation process because it was contaminated by storm surge damage. 

 
Table 18a. 2004 Personal Residential Claim Data 

 
PR04a. Distribution of claims per hurricane for PR-2004 Companies. 

 
  PR2-2004  PR3-2004  PR4-2004  PR5-2004  

Charley 12641 34149 289 8030 
Frances 12731 27866 200 7,301 

Ivan 6202 21424 31 817 
Jeanne 11547 19975 248 10,390 
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PR04b. Distribution of claims per coverage for PR-2004 Companies. 
 

Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
A 0 155 0 0 
R 43121 103414 768 26,538 

 
PR04c. Distribution of claims per construction type for PR-2004 Companies. 

 
Exterior Wall PR2-2004  PR3-2004  PR4-2004  PR5-2004  

Frame 10760 23471 198 0 
Manuf. Homes 0 0 0 26,538 

Masonry 31673 79911 569 0 
Other 688 32 1 0 

 
PR04d. Distribution of claims per story for PR-2004 Companies. 

 
Stories PR2-2004  PR3-2004  PR4-2004  PR5-2004  

1 0 0 0 26,538 
2 0 0 0 0 

Unknown 43121 103,414 768 0 
 

PR04e. Distribution of claims per era for PR-2004 Companies. 
 

Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 1785 7854 125 0 

1960-1970 3983 12033 102 0 
1971-1980 8312 19,772 145 0 
1981-1993 18621 46,525 276 0 
1994-2001 5545 14,436 91 0 

2002-present 4875 2,785 29 0 
MH pre-1994 0 0 0 22172 

MH 1994-present 0 0 0 4366 
 

PR04f. Distribution of claims per era for PR-2004 Companies, for hurricane Charley, and 
construction types Frame and Manufactured Homes. 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 119 535 20 0 

1960-1970 80 190 2 0 
1971-1980 212 471 3 0 
1981-1993 956 2752 31 0 
1994-2001 128 247 8 0 

2002-present 237 29 1 0 
MH pre-1994 0 0 0 6665 

MH 1994-present 0 0 0 1365 
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PR04g. Distribution of claims per era for PR-2004 Companies, for hurricane Charley, and 
construction type Masonry 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 409 1870 32 0 

1960-1970 972 3051 37 0 
1971-1980 1909 5478 46 0 
1981-1993 4674 13668 64 0 
1994-2001 1580 4877 34 0 

2002-present 1271 968 10 0 
 

PR04h. Distribution of claims per era for PR-2004 Companies, for hurricane Charley, and 
construction type Other 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 0 0 0 0 

1960-1970 5 0 0 0 
1971-1980 35 0 0 0 
1981-1993 35 8 0 0 
1994-2001 3 1 0 0 

2002-present 16 0 0 0 
 

PR04i. Distribution of claims per era for PR-2004 Companies, for hurricane Frances, and 
construction type Frame and Manufactured Homes 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 110 419 7 0 

1960-1970 96 218 4 0 
1971-1980 555 922 6 0 
1981-1993 2845 5689 24 0 
1994-2001 265 311 8 0 

2002-present- 358 30 3 0 
MH pre-1994 0 0 0 6145 

MH 1994-present 0 0 0 1156 
 

PR04j. Distribution of claims per era for PR-2004 Companies, for hurricane Frances, and 
construction type Masonry 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 348 1433 15 0 

1960-1970 1043 3181 27 0 
1971-1980 1906 4770 34 0 
1981-1993 3129 8165 56 0 
1994-2001 954 2206 15 0 

2002-present 864 511 1 0 
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 PR04k. Distribution of claims per era for PR-2004 Companies, for hurricane Frances, and 
construction type Other 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 0 0 0 0 

1960-1970 8 0 0 0 
1971-1980 50 2 0 0 
1981-1993 114 4 0 0 
1994-2001 5 3 0 0 

2002-present 81 0 0 0 
 

PR04l. Distribution of claims per era for PR-2004 Companies, for hurricane Ivan, and construction 
type Frame and Manufactured Homes 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 140 914 4 0 

1960-1970 117 538 2 0 
1971-1980 174 759 2 0 
1981-1993 626 3292 4 0 
1994-2001 302 1636 0 0 

2002-present- 273 223 0 0 
MH pre-1994 0 0 0 620 

MH 1994-present 0 0 0 197 
 
PR04m. Distribution of claims per era for PR-2004 Companies, for hurricane Ivan, and construction 

type Masonry 
 

Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 151 1,207 4 0 

1960-1970 624 2,557 4 0 
1971-1980 1279 3,573 3 0 
1981-1993 1320 4,087 6 0 
1994-2001 676 2,251 2 0 

2002-present 467 378 0 0 
 
PR04n. Distribution of claims per era for PR-2004 Companies, for hurricane Ivan, and construction 

type Other 
 

Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 1 0 0 0 

1960-1970 0 0 0 0 
1971-1980 12 1 0 0 
1981-1993 23 2 0 0 
1994-2001 3 3 0 0 

2002-present 13 1 0 0 
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PR04o. Distribution of claims per era for PR-2004 Companies, for hurricane Jeanne, and 
construction type Frame and Manufactured Homes 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 137 376 16 0 

1960-1970 81 166 2 0 
1971-1980 399 493 9 0 
1981-1993 1983 2939 30 0 
1994-2001 276 296 10 0 

2002-present- 290 24 2 0 
MH pre-1994 0 0 0 8742 

MH 1994-present 0 0 0 1648 
 

PR04p. Distribution of claims per era for PR-2004 Companies, for hurricane Jeanne, and 
construction type Masonry 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 369 1,100 26 0 

1960-1970 951 2,132 24 0 
1971-1980 1716 3,303 42 0 
1981-1993 2795 5,915 61 0 
1994-2001 1340 2,604 14 0 

2002-present 926 619 12 0 
 

PR04q. Distribution of claims per era for PR-2004 Companies, for hurricane Jeanne, and 
construction type Other 

 
Year Built PR2-2004  PR3-2004  PR4-2004  PR5-2004  
pre1960 1 0 0 0 

1960-1970 5 0 0 0 
1971-1980 65 0 0 0 
1981-1993 121 4 0 0 
1994-2001 13 1 0 0 

2002-present 79 2 0 0 
 
 
2005 Personal  Residential Claim Data 

Claims data for the 2005 hurricane season from a series of insurance companies were also used to 
validate the FPHLM.  Five insurance companies provided claim data for the 2005 hurricane 
season.  They will be referred to as companies PR1 to 5-2005.  Company PR5-2005 has only 
manufactured homes.  See Table PR05a to q.  The data for hurricane Rita was not used given the 
small number of claims. 



FPHLM V5.0 2013 

196 
 

Table 18b. 2005 Personal Residential Claim Data 

PR05a. Distribution of claims per hurricane for PR-2005 Companies. 
 

  PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
Dennis 3968 1251 3,467 9 232 
Katrina 5382 201 2,379 30 78 

Rita 56 34 0 1 4 
Wilma 62677 9247 21328 264 5,302 

 
PR05b. Distribution of claims per coverage for PR-2005 Companies. 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  

A 5990 10733 43 304 0 
R 66093 0 27,131 0 5616 

 
PR05c. Distribution of claims per construction type for PR-2005 Companies. 

 
Exterior Wall PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  

Frame 6920 1629 2,881 44 0 
Manuf. Homes 1402 0 0 0 5616 

Masonry 60475 8538 24,292 258 0 
Other 3286 566 1 2 0 

 
PR05d. Distribution of claims per story for PR-2005 Companies. 

 
Stories PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  

1 664 0 0 0 0 
2 146 0 0 0 0 

Unknown 71273 10733 27,174 304 0 
 

PR05e. Distribution of claims per era for PR-2005 Companies. 
 

Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 6204 233 2,526 47 0 

1960-1970 10865 770 3,715 58 0 
1971-1980 18922 2441 7172 69 0 
1981-1993 26412 4498 10202 98 0 
1994-2001 7172 1571 2,908 28 0 

2002-present 1106 1220 649 4 0 
MH pre-1994 1274 0 0 0 4227 

MH 1994-present 128 0 0 0 1389 
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PR05f. Distribution of claims per era for PR-2005 Companies, for hurricane Dennis, and 
construction type Frame. 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 242 26 106 1 0 

1960-1970 541 26 73 1 0 
1971-1980 815 33 128 2 0 
1981-1993 1046 112 452 0 0 
1994-2001 573 77 422 0 0 

2002-present 66 45 59 0 0 
MH pre-1994 36 0 0 0 162 

MH 1994-present 18 0 0 0 70 
 

PR05g. Distribution of claims per era for PR-2005 Companies, for hurricane Dennis, and 
construction type Masonry 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 93 21 150 1 0 

1960-1970 175 110 324 1 0 
1971-1980 140 237 537 2 0 
1981-1993 124 255 535 1 0 
1994-2001 70 218 562 0 0 

2002-present- 12 89 118 0 0 
 

PR05h. Distribution of claims per era for PR-2005 Companies, for hurricane Dennis, and 
construction type Other 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 0 0 0 0 0 

1960-1970 0 0 0 0 0 
1971-1980 6 0 0 0 0 
1981-1993 11 1 0 0 0 
1994-2001 0 0 1 0 0 

2002-present 0 1 0 0 0 
 

PR05i. Distribution of claims per era for PR-2005 Companies, for hurricane Katrina, and 
construction type Frame 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 60 1 25 0 0 

1960-1970 40 1 8 0 0 
1971-1980 43 3 10 0 0 
1981-1993 91 9 52 0 0 
1994-2001 44 3 20 0 0 

2002-present 8 4 6 0 0 
MH pre-1994 45 0 0 0 68 

MH 1994-present 1 0 0 0 10 
 



FPHLM V5.0 2013 

198 
 

PR05j. Distribution of claims per era for PR-2005 Companies, for hurricane Katrina, and 
construction type Masonry 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 969 10 410 12 0 

1960-1970 1137 26 456 10 0 
1971-1980 1428 48 583 4 0 
1981-1993 1297 53 727 4 0 
1994-2001 133 27 74 0 0 

2002-present 23 12 8 0 0 
 

PR05k. Distribution of claims per era for PR-2005 Companies, for hurricane Katrina, and 
construction type Other 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 1 0 0 0 0 

1960-1970 14 0 0 0 0 
1971-1980 31 1 0 0 0 
1981-1993 13 2 0 0 0 
1994-2001 4 0 0 0 0 

2002-present 0 1 0 0 0 
 
PR05l. Distribution of claims per era for PR-2005 Companies, for hurricane Rita, and construction 

type Frame 
 

Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 0 0 0 0 0 

1960-1970 1 0 0 0 0 
1971-1980 1 2 0 0 0 
1981-1993 0 1 0 1 0 
1994-2001 0 0 0 0 0 

2002-present 0 2 0 0 0 
MH pre-1994 1 0 0 0 4 

MH 1994-present 0 0 0 0 0 
 
PR05m. Distribution of claims per era for PR-2005 Companies, for hurricane Rita, and construction 

type Masonry 
 

Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 6 1 0 0 0 

1960-1970 13 2 0 0 0 
1971-1980 14 7 0 0 0 
1981-1993 17 7 0 0 0 
1994-2001 2 10 0 0 0 

2002-present 0 1 0 0 0 
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PR05n. Distribution of claims per era for PR-2005 Companies, for hurricane Rita, and construction 
type Other 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 0 0 0 0 0 

1960-1970 0 0 0 0 0 
1971-1980 1 0 0 0 0 
1981-1993 0 1 0 0 0 
1994-2001 0 0 0 0 0 

2002-present 0 0 0 0 0 
 

PR05o. Distribution of claims per era for PR-2005 Companies, for hurricane Wilma, and 
construction type Frame 

 
Year Built PR1-2005 PR2-2005 PR3-2005 PR4-2005 PR5-2005 
pre1960 323 32 99 2 0 

1960-1970 151 51 47 1 0 
1971-1980 546 213 212 7 0 
1981-1993 2136 786 1084 25 0 
1994-2001 164 114 70 4 0 

2002-present 29 88 8 0 0 
MH pre-1994 1192 0 0 0 3993 

MH 1994-present 109 0 0 0 1309 
 

PR05p. Distribution of claims per era for PR-2005 Companies, for hurricane Wilma, and 
construction type Masonry 

 
Year Built PR1-2005 PR2-2005 PR3-2005 PR4-2005 PR5-2005 
pre1960 4484 142 1736 31 0 

1960-1970 8567 542 2,807 45 0 
1971-1980 14288 1721 5702 54 0 
1981-1993 20430 3079 7352 65 0 
1994-2001 6089 1103 1759 24 0 

2002-present- 964 817 450 4 0 
 

PR05q. Distribution of claims per era for PR-2005 Companies, for hurricane Wilma, and 
construction type Other 

 
Year Built PR1-2005  PR2-2005  PR3-2005  PR4-2005  PR5-2005  
pre1960 26 0 0 0 0 

1960-1970 226 12 0 0 0 
1971-1980 1609 176 0 0 0 
1981-1993 1247 192 0 2 0 
1994-2001 93 19 0 0 0 

2002-present- 4 160 0 0 0 
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Commercial Residential Claim Data 
 
Claims data from the 2004 and the 2005 hurricane seasons for commercial residential from four 
insurance companies (referred to as companies CR1 to 4) were also used to validate the 
commercial residential module of the FPHLM.  The details are given below, for low rise 
commercial and for mid/high rise commercial, in Tables CR04-LRa to q, CR05-LRa to n, CR04-
MRa to q, and CR05-MRa to k.  The vast majority of the claims are for low-rise 1 and 2 story 
buildings. 
   
The policies for company CR2 included commercial line accounts (CLA) for condominium 
association, apartment building, and homeowners association policies, and the policies for 
company CR3 included high risk accounts (HRA) in coastal areas.  
 
2004 Low Rise Commercial Residential Claim Data  
 
It is clear from Tables CR04-LRa to q that the vast majority of LR 2004 claim data consists of 
masonry one and two story tall pre-1994 buildings. 
 
Table 18c.  2004 Low Rise Commercial Residential Claim Data 

 
CR04-LRa. Distribution of claims per hurricane for CR LR 2004 companies. 

 
 CR1-LR04 CR2-LR04 CR3-LR04 

Charley 575 11 182 
Frances 691 78 808 

Ivan 166 0 0 
Jeanne 285 12 280 

 
CR04-LRb. Distribution of claims per coverage for CR LR 2004 companies. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

A 0 0 0 
R 1717 0 0 

Not Provided 0 101 1270 
 

CR04-LRc. Distribution of claims per construction type for CR LR 2004 companies. 
 

Exterior Wall CR1-LR04 CR2-LR04 CR3-LR04 
Frame 405 28 240 

Masonry 1204 73 1030 
Other 108 0 0 

 
CR04-LRd. Distribution of claims per story for CR LR 2004 companies. 

 
Stories CR1-LR04 CR2-LR04 CR3-LR04 

1 806 24 441 
2 789 69 677 
3 122 8 152 
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CR04-LRe. Distribution of claims per era for CR LR 2004 companies. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 69 1 273 
1960-1970 155 28 279 
1971-1980 452 31 389 
1981-1993 987 41 286 
1994-2001 51 0 34 

2002-present 3 0 9 
 

CR04-LRf. Distribution of claims per era for CR LR 2004 companies, for hurricane Charley, and 
construction type Frame. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 12 0 20 
1960-1970 1 0 11 
1971-1980 6 7 19 
1981-1993 50 4 20 
1994-2001 2 0 2 

2002-present 0 0 0 
 

CR04-LRg. Distribution of claims per era for CR LR 2004 companies, for hurricane Charley, and 
construction type Masonry. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 10 0 12 
1960-1970 33 0 17 
1971-1980 153 0 45 
1981-1993 290 0 26 
1994-2001 9 0 10 

2002-present 0 0 0 
 

 
 CR04-LRh. Distribution of claims per era for CR LR 2004 companies, for hurricane Charley, and 

construction type Other. 
 

Year Built CR1-LR04 CR2-LR04 CR3-LR04 
pre1960 0 0 0 

1960-1970 0 0 0 
1971-1980 3 0 0 
1981-1993 6 0 0 
1994-2001 0 0 0 

2002-present 0 0 0 
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CR04-LRi. Distribution of claims per era for CR LR 2004 companies, for hurricane Frances, and 
construction type Frame. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 8 1 58 
1960-1970 3 0 11 
1971-1980 6 3 22 
1981-1993 119 7 33 
1994-2001 12 0 3 

2002-present 0 0 0 
 
 

 CR04-LRj. Distribution of claims per era for CR LR 2004 companies, for hurricane Frances, and 
construction type Masonry. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 11 0 111 
1960-1970 69 25 169 
1971-1980 152 17 214 
1981-1993 206 25 165 
1994-2001 11 0 16 

2002-present 2 0 6 
 

 CR04-LRk. Distribution of claims per era for CR LR 2004 companies, for hurricane Frances, and 
construction type Other. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 0 0 0 
1960-1970 0 0 0 
1971-1980 6 0 0 
1981-1993 85 0 0 
1994-2001 1 0 0 

2002-present 0 0 0 
 

CR04-LRl. Distribution of claims per era for CR LR 2004 companies, for hurricane Ivan, and 
construction type Frame. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 5 0 0 
1960-1970 11 0 0 
1971-1980 49 0 0 
1981-1993 66 0 0 
1994-2001 6 0 0 

2002-present- 0 0 0 
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CR04-LRm. Distribution of claims per era for CR LR 2004 companies, for hurricane Ivan, and 
construction type Masonry. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 5 0 0 
1960-1970 9 0 0 
1971-1980 9 0 0 
1981-1993 5 0 0 
1994-2001 0 0 0 

2002-present- 0 0 0 
 

 
 CR04-LRn. Distribution of claims per era for CR LR 2004 companies, for hurricane Ivan, and 

construction type Other. 
 

Year Built CR1-LR04 CR2-LR04 CR3-LR04 
pre1960 0 0 0 

1960-1970 0 0 0 
1971-1980 0 0 0 
1981-1993 1 0 0 
1994-2001 0 0 0 

2002-present- 0 0 0 
 

 CR04-LRo. Distribution of claims per era for CR LR 2004 companies, for hurricane Jeanne, and 
construction type Frame. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 12 0 47 
1960-1970 1 0 69 
1971-1980 2 1 85 
1981-1993 32 5 34 
1994-2001 2 0 1 

2002-present- 0 0 3 
 

 CR04-LRp. Distribution of claims per era for CR LR 2004 companies, for hurricane Jeanne, and 
construction type Masonry. 

 
Year Built CR1-LR04 CR2-LR04 CR3-LR04 

pre1960 6 0 47 
1960-1970 28 3 69 
1971-1980 64 3 85 
1981-1993 124 0 34 
1994-2001 7 0 1 

2002-present- 1 0 3 
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CR04-LRq. Distribution of claims per era for CR LR 2004 companies, for hurricane Jeanne, and 
construction type Other. 

 
Year Built CR1-LR04  CR2-LR04 CR3-LR04 

pre1960 0 0 0 
1960-1970 0 0 0 
1971-1980 2 0 0 
1981-1993 3 0 0 
1994-2001 0 0 0 

2002-present- 0 0 0 
 
 
2005 Low Rise Commercial Residential Claim Data  
 
It is clear from Tables CR05-LRa to n that the vast majority of LR 2005 claim data consists of masonry 
one and two story tall pre-1994 buildings for hurricane Wilma.   
 

Table 18d. 2005 Low Rise Commercial Residential Claim Data 

 
 

CR05-LRa. Distribution of claims per hurricane for CR LR 2005 companies. 
 

 CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 
Dennis 22 0 0 0 
Katrina 68 81 186 0 
Wilma 1117 1356 2080 410 

 
 CR05-LRb. Distribution of claims per coverage for CR LR 2005 companies. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

A 0 0 0 0 
R 1207 0 0 0 

Not Provided 0 1437 2266 410 
 

 
CR05-LRc. Distribution of claims per construction type for CR LR 2005 companies. 

 
Exterior Wall CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

Frame 180 168 102 47 
Masonry 933 1269 2164 363 

Other 94 0 0 0 
 

 CR05-LRd. Distribution of claims per story for CR LR 2005 companies. 
 

Stories CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 
1 645 458 955 180 
2 498 863 1111 221 
3 64 116 200 9 
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 CR05-LRe. Distribution of claims per era for CR LR 2005 companies. 
 

Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 
pre1960 3 112 644 0 

1960-1970 98 229 743 0 
1971-1980 279 501 559 6 
1981-1993 811 578 270 119 
1994-2001 16 17 35 196 

2002-present 0 0 15 89 
 

CR05-LRf. Distribution of claims per era for CR LR 2005 companies, for hurricane Dennis, and 
construction type Frame. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 2 0 0 0 
1981-1993 12 0 0 0 
1994-2001 7 0 0 0 

2002-present- 0 0 0 0 
 

 CR05-LRg. Distribution of claims per era for CR LR 2005 companies, for hurricane Dennis, and 
construction type Masonry. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 1 0 0 0 
1981-1993 0 0 0 0 
1994-2001 0 0 0 0 

2002-present- 0 0 0 0 
 

 CR05-LRh. Distribution of claims per era for CR LR 2005 companies, for hurricane Dennis, and 
construction type Other. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 0 0 0 0 
1981-1993 0 0 0 0 
1994-2001 0 0 0 0 

2002-present 0 0 0 0 
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CR05-LRi. Distribution of claims per era for CR LR 2005 companies, for hurricane Katrina, and 

construction type Frame. 
 

Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 
pre1960 0 0 2 0 

1960-1970 0 0 0 0 
1971-1980 1 0 1 0 
1981-1993 2 6 1 0 
1994-2001 0 0 0 0 

2002-present 0 0 0 0 
 

CR05-LRj. Distribution of claims per era for CR LR 2005 companies, for hurricane Katrina, and 
construction type Masonry. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 0 13 62 0 
1960-1970 3 9 61 0 
1971-1980 4 29 29 0 
1981-1993 54 23 23 0 
1994-2001 0 1 5 0 

2002-present 0 0 2 0 
 

 CR05-LRk. Distribution of claims per era for CR LR 2005 companies, for hurricane Katrina, and 
construction type Other. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 0 0 0 0 
1981-1993 4 0 0 0 
1994-2001 0 0 0 0 

2002-present 0 0 0 0 
 

 CR05-LRl. Distribution of claims per era for CR LR 2005 companies, for hurricane Wilma, and 
construction type Frame. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 2 4 46 0 
1960-1970 93 0 20 0 
1971-1980 248 11 12 0 
1981-1993 525 147 19 9 
1994-2001 4 0 1 29 

2002-present 0 0 0 9 
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CR05-LRm. Distribution of claims per era for CR LR 2005 companies, for hurricane Wilma, and 
construction type Masonry. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 1 95 534 0 
1960-1970 93 220 662 0 
1971-1980 248 461 517 6 
1981-1993 525 402 227 110 
1994-2001 4 16 29 167 

2002-present 0 0 13 80 
 

CR05-LRn. Distribution of claims per era for CR LR 2005 companies, for hurricane Wilma, and 
construction type Other. 

 
Year Built CR1-LR05 CR2-LR05 CR3-LR05 CR4-LR05 

pre1960 0 0 0 0 
1960-1970 1 0 0 0 
1971-1980 21 0 0 0 
1981-1993 64 0 0 0 
1994-2001 4 0 0 0 

2002-present 0 0 0 0 
 
 
2004 Mid/High Rise Commercial Residential Claim Data 
 
 

Table 18e. 2004 Mid/High Rise Commercial Residential Claim Data 

 
It is clear from Tables CR04-MRa to n that the number of MHR 2004 claims is very small.   It consists 
mainly of masonry or other four to eleven story tall pre-1994 buildings. 

 
CR04-MRa. Distribution of claims per hurricane for CR MHR 2004 companies. 

 
 CR1-MHR04 CR2-MHR04 CR3-MHR04 

Charley 23 4 34 
Frances 21 5 56 
Jeanne 4 0 15 

 
CR04-MRb. Distribution of claims per coverage for CR MHR 2004 companies. 

 
Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 

A 0 0 0 
R 48 0 0 

Not Provided 0 9 105 
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CR04-MRc. Distribution of claims per construction type for CR MHR 2004 companies. 
 

Exterior Wall CR1-MHR04 CR2-MHR04 CR3-MHR04 
Frame 2 0 2 

Masonry 34 9 103 
Other 12 0 0 

 
CR04-MRd. Distribution of claims per story for CR MHR 2004 companies. 

 
Stories CR1-MHR04 CR2-MHR04 CR3-MHR04 

4 11 1 23 
5 14 7 28 
6 5 0 8 
7 6 0 15 
8 2 1 7 
9 2 0 4 

10 8 0 2 
11 0 0 2 
12 0 0 1 
13 0 0 1 
15 0 0 1 
26 0 0 1 
36 0 0 1 
42 0 0 1 

 
CR04-MRe. Distribution of claims per era for CR MHR 2004 companies. 

 
Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 

pre1960 1 0 4 
1960-1970 1 1 8 
1971-1980 21 4 35 
1981-1993 25 4 50 
1994-2001 0 0 7 

2002-present 0 0 1 
 
CR04-MRf. Distribution of claims per era for CR MHR 2004 companies, for hurricane Charley, and 

construction type Frame. 
 

Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 
pre1960 0 0 0 

1960-1970 0 0 0 
1971-1980 0 0 0 
1981-1993 0 0 0 
1994-2001 0 0 0 

2002-present 0 0 0 
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CR04-MRg. Distribution of claims per era for CR MHR 2004 companies, for hurricane Charley, 
and construction type Masonry. 

 
Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 

pre1960 0 0 0 
1960-1970 0 0 2 
1971-1980 10 4 9 
1981-1993 10 0 20 
1994-2001 0 0 3 

2002-present 0 0 0 
 

CR04-MRh. Distribution of claims per era for CR MHR 2004 companies, for hurricane Charley, 
and construction type Other. 

 
Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 

pre1960 0 0 0 
1960-1970 0 0 0 
1971-1980 1 0 0 
1981-1993 2 0 0 
1994-2001 0 0 0 

2002-present 0 0 0 
 
CR04-MRi. Distribution of claims per era for CR MHR 2004 companies, for hurricane Frances, and 

construction type Frame. 
 

Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 
pre1960 0 0 1 

1960-1970 0 0 0 
1971-1980 0 0 0 
1981-1993 2 0 0 
1994-2001 0 0 0 

2002-present 0 0 0 
 
CR04-MRj. Distribution of claims per era for CR MHR 2004 companies, for hurricane Frances, and 

construction type Masonry. 
 

Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 
pre1960 1 0 3 

1960-1970 0 1 3 
1971-1980 9 0 23 
1981-1993 3 4 22 
1994-2001 0 0 3 

2002-present 0 0 1 
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CR04-MRk. Distribution of claims per era for CR MHR 2004 companies, for hurricane Frances, 
and construction type Other. 

 
Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 

pre1960 0 0 0 
1960-1970 0 0 0 
1971-1980 1 0 0 
1981-1993 5 0 0 
1994-2001 0 0 0 

2002-present 0 0 0 
 
CR04-MRl. Distribution of claims per era for CR MHR 2004 companies, for hurricane Jeanne, and 

construction type Frame. 
 

Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 
pre1960 0 0 0 

1960-1970 0 0 0 
1971-1980 0 0 0 
1981-1993 0 0 1 
1994-2001 0 0 0 

2002-present 0 0 0 
 
CR04-MRm. Distribution of claims per era for CR MHR 2004 companies, for hurricane Jeanne, and 

construction type Masonry. 
 

Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 
pre1960 0 0 0 

1960-1970 0 0 3 
1971-1980 0 0 3 
1981-1993 1 0 7 
1994-2001 0 0 1 

2002-present 0 0 0 
 
CR04-MRn. Distribution of claims per era for CR MHR 2004 companies, for hurricane Jeanne, and 

construction type Other. 
 

Year Built CR1-MHR04 CR2-MHR04 CR3-MHR04 
pre1960 0 0 0 

1960-1970 1 0 0 
1971-1980 0 0 0 
1981-1993 2 0 0 
1994-2001 0 0 0 

2002-present 0 0 0 
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2005 Mid/High Rise Commercial Residential Claim Data  
 
It is clear from Tables CR05-MRa to k that the number of MHR 2005 claims is very small.   It 
consists mainly of masonry four to ten story tall pre-1994 buildings for hurricane Wilma. 
 
Table 18f.  2005 Mid/Hid Rise Commercial Residential Claim Data 

 
CR05-MRa. Distribution of claims per hurricane for CR MHR 2005 companies. 

 
 

 
 

CR05-MRb. Distribution of claims per coverage for CR MHR 2005 companies. 
 

Year 
Built 

CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

A 0 0 0 0 
R 126 0 0 0 

Not 
Provided 

0 118 127 42 

 
CR05-MRc. Distribution of claims per construction type for CR MHR 2005 companies. 

 
Exterior Wall CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

Frame 0 0 1 0 
Masonry 107 118 127 42 

Other 19 0 0 0 
 

CR05-MRd. Distribution of claims per story for CR MHR 2005 companies. 
 

Stories CR1-MHR05 CR2-
MHR05 

CR3-
MHR05 

CR4-
MHR05 

4 64 70 54 40 
5 17 37 29 0 
6 8 3 12 0 
7 13 2 6 0 
8 9 1 7 0 
9 4 4 3 0 
10 11 1 3 0 
11 0 0 1 0 
14 0 0 2 0 
15 0 0 2 0 
16 0 0 2 0 
17 0 0 0 2 

 CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

Katrina 0 0 10 0 
Wilma 125 118  42 
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18 0 0 1 0 
19 0 0 1 0 
22 0 0 1 0 
23 0 0 1 0 
29 0 0 1 0 
31 0 0 1 0 

 
CR05-MRe. Distribution of claims per era for CR MHR 2005 companies. 

 
Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

pre1960 1 0 8 0 
1960-1970 1 6 42 0 
1971-1980 52 52 38 0 
1981-1993 65 60 34 28 
1994-2001 7 0 3 12 

2002-present 0 0 2 2 
 

CR05-MRf. Distribution of claims per era for CR MHR 2005 companies, for hurricane Katrina, and 
construction type Frame. 

 
Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 0 0 0 0 
1981-1993 0 0 0 0 
1994-2001 0 0 0 0 

2002-
present 

0 0 0 0 

 
CR05-MRg. Distribution of claims per era for CR MHR 2005 companies, for hurricane Katrina, 

and construction type Masonry. 
 

Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 
pre1960 0 0 1 0 

1960-1970 0 0 4 0 
1971-1980 0 0 3 0 
1981-1993 0 0 1 0 
1994-2001 0 0 1 0 

2002-present 0 0 0 0 
 

CR05-MRh. Distribution of claims per era for CR MHR 2005 companies, for hurricane Katrina, 
and construction type Other 

 
Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 0 0 0 0 
1981-1993 0 0 0 0 
1994-2001 0 0 0 0 

2002-present 0 0 0 0 
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CR05-MRi. Distribution of claims per era for CR MHR 2005 companies, for hurricane Wilma, and 
construction type Frame 

 
Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

pre1960 0 0 0 0 
1960-1970 0 0 0 0 
1971-1980 0 0 0 0 
1981-1993 0 0 1 0 
1994-2001 0 0 0 0 

2002-present 0 0 0 0 
 

CR05-MRj. Distribution of claims per era for CR MHR 2005 companies, for hurricane Wilma, and 
construction type Masonry 

 
Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 

pre1960 1 0 7 0 
1960-1970 1 6 38 0 
1971-1980 40 52 35 0 
1981-1993 57 60 32 28 
1994-2001 7 0 2 12 

2002-present 0 0 2 2 
 
CR05-MRk. Distribution of claims per era for CR MHR 2005 companies, for hurricane Wilma, and 

construction type Other 
 

Year Built CR1-MHR05 CR2-MHR05 CR3-MHR05 CR4-MHR05 
pre1960 0 0 0 0 

1960-1970 0 0 0 0 
1971-1980 11 0 0 0 
1981-1993 8 0 0 0 
1994-2001 0 0 0 0 

2002-present 0 0 0 0 
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disasters, and a Vulnerability Assessment and Mapping System known as VAMS (Berke et al., 
1984) enabled the user to consider various types of hurricanes with varying surges, wind patterns, 
and points of landfall. This information is of some interest, but it is not directly applicable to 
residential construction in Florida.  
 
Most studies for residential losses use post-disaster investigations (FEMA, 1992) or available 
claims data to fit damage versus wind speed vulnerability curves. For example, a relationship 
between home damage from insurance data and wind speed was proposed for Typhoons Mireille 
and Flo (Mitsuta et al., 1996). A study by Holmes (1996) presented the vulnerability curve for a 
fully engineered building with strength assumed to have lognormal distribution but clearly 
indicated the need for more thorough post-disaster investigations to better define damage 
prediction models. A method for predicting the percentage of damage within an area as a function 
of wind speed and various other parameters was presented by Sill and Kozlowski (1997). The 
proposed method was intended to move away from curve fitting schemes, but its practical value 
was hampered by insufficient clarity and transparency. Huang et al. (2001) presented a risk 
assessment strategy based on an analytical expression for the vulnerability curve. The expression 
is obtained by regression techniques from insurance claims data for Hurricane Andrew. Khanduri 
and Morrow (2003) also presented a similar method of assessment of vulnerability and a 
methodology to translate known vulnerability curves from one region to another region. Although 
such approaches are simple, they are highly dependent on the type of construction and 
construction practices common to the areas represented in the claims data. Recent changes in 
building codes or construction practices cannot be adequately reflected by regression-derived 
vulnerability curves. In addition, damage curves obtained by regression from observed data can 
be misleading because very often, as was the case for Hurricane Andrew, few reliable wind speed 
data are available. In addition, damage curves regressed from observed data do not adequately 
represent the influence of primary storm characteristics such as central pressure, forward velocity, 
radius of maximum wind, the amount of rain, duration, and other secondary parameters such as 
demand surge and preparedness. 
 
In contrast, a component approach explicitly accounts for both the resistance capacity of the 
various building components and the load effects produced by wind events to predict damage at 
various wind speeds. In the component approach the resistance capacity of a building can be 
broken down into the resistance capacity of its components and the connections between them. 
Damage to the structure occurs when the load effects from wind or flying debris are greater than 
the component’s capacity to resist them. Once the strength capacities, load demands, and load 
path(s) are identified and modeled, the vulnerability of a structure at various wind speeds can be 
estimated. Estimations are affected by uncertainties regarding both the behavior and strength of 
the various components and the load effects produced by hurricane winds.  
 
The treatment of unknown construction types is treated in disclosure 10 of this Standard. 
 
Research related to the interior damage module of the commercial residential model 
 
The modelers developed a novel approach to assess interior damage. The method complements 
the component approach described above to compute the damage to the building envelope 
(Weekes et al., 2009). The method is summarized in Figure 46.  The model estimates the amount 
of wind-driven rain that enters through the breaches and defects (also referred to as pre-existing 
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deficiencies) in the building envelope and converts it to interior damage. The approach is 
described below. 
 

 
 

Figure 46. Flowchart of the interior damage model. 

 
The building components that the model considers for low rise buildings are roof cover, roof 
sheathing, wall cover, wall sheathing, gable cover, gable sheathing, windows, doors, and sliding 
doors. For an initial wind speed, the model starts loading the exterior damage array, expressed as 
breach areas of each component for thousands of simulation runs. An estimated area of existing 
defects or deficiencies in envelope components is also accounted for from surveys and 
engineering experience.  It has been demonstrated that in buildings subjected to hurricane winds, 
the interior damage may start well before there are any breaches in the envelope (Mullens et al., 
2006). The interior damage at this early stage is certainly nonnegligible and is caused by the 
building’s existing defects that may be hidden or not, such as cracks, poorly caulked electrical 
outlets and ventilation ducts, inadequately sealed windows and doors, soffits, baseboards, door 
thresholds, etc. (Lstiburek, 2005). 
 
The quantification of existing defects is based on the surveys published in Mullens et al. (2006) 
and the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) Handbook 
for estimating of the infiltration area. To capture the quality of the construction, the model applies 
defect densities depending on the building’s strength, which is related to the year built. Thus, 
strong buildings will have fewer defects than medium and weak buildings.  
 
As an example Table 19 shows the values adopted for the defects related to windows, doors, and 
sliders for the case of mid-/high-rise buildings.  These values are adopted from the ASHRAE 
(2001) Handbook. 
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Table 19. Defects values for mid-/high-rise building openings. 

Windows masonry 
caulked 

Defect 
area 

cm2/m2 1.3 
ft2/ ft2 0.00013 

ft2/each 0.0026 
Frame plus door weatherized 
cm2/each 24 

ft2/each 0.0258 
Slider 
cm2/each 22 

ft2/each 0.0237 
 
 
More recent studies have shown that water ingress via wind driven rain cannot be attributed 
exclusively to envelope breach, installation, or product defects. Properly manufactured, installed, 
and caulked fenestration may nonetheless offer leakage paths in extreme wind conditions, the 
severity of which is highly dependent on the specific product (Salzano et al., 2010). As this line of 
research matures, its findings will be incorporated within the above framework. 
 
In order to estimate water intrusion into the buildings, a study was performed to estimate the 
likely accumulated horizontally impinging rain on a structure during a hurricane event. This study 
used a simulation model that is composed of a simplified wind model and the R-CLIPER rain rate 
model developed at NOAA HRD (Lonfat et al., 2007) and is used operationally at NHC. The 
simplified wind model is based on Holland (1980) and includes parameters for the pressure 
profile ("B"), Rmax, translation speed and central pressure. Additionally, the Vickery (2005) 
pressure filling model was used to decay the storms. Storm parameters are sampled from 
distributions relevant to Florida. The R-CLIPER model determines the vertically free-falling rain 
rates at each time step of the simulation. The R-CLIPER rain rate is essentially an azimuthally 
averaged rain rate that varies as a function of radius and maximum intensity of the storm. A 
detailed presentation of this subject is presented in the General Standard. 
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The product of the areas of the breaches and defects by the impinging rain conveys the amount of 
water that enters the building.  The water penetration at each story is computed as follows. 
 
Water penetration through components defects or pre-existing deficiencies: 
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Water penetration through breaches: 
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Where: 
  

hd
Ci: height of water that accumulates due to defects in component i, in inches 

hb
Ci:  height of water that accumulates due to envelope breaches in component i, in 

inches 
k: adjustment factor  
RAF:  rain admittance factor 
dCi:  defects percentage   
ACi:  area of component i  
AB

Ci:  breach area of component i  
Ab:  floor area  
IR1 :  accumulated impinging rain prior to maximum wind 
IR2 :  accumulated impinging rain after the occurrence of maximum wind 
SCi : survival factor for component i = 1 – AB

Ci / ACi 
 

Rain admittance factor, RAF. 
 
The rain admittance factor (RAF) is the fraction of the approaching rain that strikes the building. 
It accounts for the effect of a large portion of the rain moving around the structure with the wind 
rather than striking the building surface and is dependent on the building shape. Straube and 
Burnett (2000) and Blocken and Carmeliet (2010) suggest values for RAF between 0.2 and 0.5 for 
low-rise buildings and between less than 0.5 and 1.0 for mid-/high-rise buildings. Accordingly, 
the FPHLM adopts a value of 0.3 for the top and bottom stories of low rise buildings, and a value 
of 0.4 for the second story of a 3-story building; and, a value of 0.6 for mid-/high-rise buildings, 
except for the last story where a value of 1.0 is adopted.  For soffits (low rise buildings), RAF = 
0.15. 
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Accumulated impinging rain.  
 
For low-rise commercial residential structures, the accumulated impinging rain IR1 and IR2 are 
sampled from the rain distributions at every wind speed in the rain simulation model.  They are 
incorporated in the Monte Carlo simulations for exterior damage, and the equation for water 
penetration is applied for each simulation (row) of the exterior damage array to compute the 
vulnerability function. 
 
For mid-/high-rise structures, the model uses the mean values of the accumulated impinging rain 
and of the opening breaches, both as a function of wind speed. Figure 47 shows the mean IR1 and 
IR2 as a function of peak 3-second gusts at 10 m. As shown in the figure, simple regressions were 
performed to facilitate calculations in the mid-/high-rise commercial residential loss module. Note 
that for very high wind speeds there is large sampling error as these are rare events; thus the 
relation between mean rain and wind speed is less reliable.  
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The adjustment factor k includes the following depending upon the portion of the structure under 
consideration. 
 
Adjustment for distribution of breaches and defects in walls as a function of the wind direction, 
fsim.  
 
Only the windward walls are subjected to impinging rain. In other words, although positive and 
negative wind pressures produce damage in the whole building perimeter simultaneously, and 
also deficiencies are present throughout the building, impinging rain ingresses only through 
windward breaches.  There are eight possible wind directions (four normal to a building face, four 
in the direction of a building corner).   Each MC simulation gives an estimate of damage at a 
particular wind direction.  But once the damage occurred, the wind will keep rotating and 
changing direction over the remaining duration of the storm.  As a result, defects and breaches 
will progressively change from windward to leeward or vice-versa.  Since the simulations are not 
time histories, it is impossible to compute exactly for how long a breach or defect will be on a 
windward side or on a leeward side.  However, it is estimated that defects and window breaches, 
which are distributed on all 4 walls, have a 50% probability to be on a windward side during the 
duration of the storm, subjected to impinging rain.  Doors and sliders defects and breaches, which 
are only on one wall of the building, are assigned a 25% probability of being on a windward side 
during the duration of the storm, subjected to impinging rain.  Therefore fsim=0.5 for windows 
defects and breaches, while fsim=0.25 for doors and sliders defects and breaches. 
 
Defects and breaches are arbitrarily distributed on the roof, and are assumed to be subjected to 
impinging rain regardless of their location on the roof with respect to the wind, and therefore the 
fsim does not apply to roof. 
 
Defects and breaches are arbitrarily distributed on the roof, and are assumed to be subjected to 
impinging rain regardless of their location on the roof with respect to the wind, and therefore the 
fsim does not apply to roof. 
 
Adjustment for projection of roof breach with respect to wind direction, fRedRoof.  
 
The above adjustment factor accounts for the probability that the wall defects and breaches will 
be exposed to windward wind and impinging rain. The fRedRoof  adjustment factor accounts for the 
orientation of the exposed roof openings relative to the wind (see Figure 48). If the wind is 
normal to the ridge, fRedRoof =1.0 (the vertically projected surface area of the breach exposed to 
impinging rain is maximum). If the wind is parallel to the ridge, fRedRoof  is estimated to be 0.6 or 
0.8 (for gable and hip respectively), based  on engineering judgment since the vertically projected 
surface area of the breach exposed to impinging rain is minimum in this case. If the wind is at an 
angle with the ridge, fRedRoof is assumed to be the average value between the two previous cases, 
fRedRoof =0.8 or 0.9 (for gable and hip respectively).  Since the roof defects and breaches can be 
distributed anywhere on the roof, and average value for the eight directions is adopted resulting in 
fRedRoof =0.8 or 0.9 (for gable and hip respectively). 
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Table 20. Value of fRunWat for low-rise buildings walls 

Number of Stories 1 2 3 

Roof 1.2 1.2 1.2 
3rd story 1.0 1.0 1.0 

2nd story  1.2 1.2 
1st story   1.4 

 
Water percolation 
 
In multi-story low-rise buildings, a portion of the ingressed water percolates downward from 
story to story. The interior damage model assumes the percolation  to be 12% of the ingressed 
water at each story for low rise building (plywood floors) and 10 % for mid/high rise building 
(concrete slabs). These values of percolation are based on engineering judgment, supported by 
calibration of the model with the insurance claim data, and thus can be updated when new 
research becomes available. 
 
Figure 49 illustrates the percolation mechanism, for water ingressing at a given story from pre-
existing deficiencies and breaches in any component Ci. Upper story "j" gets rain from the pre-
existing deficiencies and the breached openings, which is converted into the heights of ingressed 
water, d

C j
h  and b

C j
h , respectively. A fraction of these water heights percolates down as d

C j
h and

b
C j

h . Rain also enters in the second story "k" through pre-existing deficiencies and the openings 

as d
Ck

h  and b
Ck

h , respectively. 

 

 
Figure 49. Diagram of water intrusion through breaches, deficiencies and percolation in a 3‐story 

building. 
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In the case of site-built single-family homes, the models are further refined with a modified weak 
to reflect pre-1960s decking practices, a retrofitted weak to model weak (older) buildings that 
have been reroofed and decking re-nailed, a modified medium to reflect loss of quality in the 
construction process in the high velocity hurricane zone before Andrew, a retrofitted medium to 
model medium buildings that have been reroofed and decking re-nailed, a strong model to reflect 
modern code requirements for inland structures and those in the WBDR but outside the HVHZ, 
and a strong model to reflect modern code requirements for structures within the HVHZ . A 
discussion of these models are provided in the standard G-1 in the section describing the building 
models, and Tables 1a and 1b (also in G-1) provide an overview of the relative strength among 
the models stratified by the exterior components included in the models.  These additions to the 
model inventory were prompted by detailed interviews with several experts on the evolution of 
construction practice (common practice, codes and enforcement) in Florida. Details of this 
interview process and its outcomes are addressed in the next section, and in the section of 
Standard G-1 on “Models’ Distribution in Time.” 
 
On the basis of the exposure study, it was also decided to model four manufactured home (MH) 
types.  These types include pre-1994—fully tied down, pre-1994—not tied down, post-1994—
HUD Zone II, and post-1994—HUD Zone III, where 1994 delineates older, much weaker styles 
of manufactured home construction than the post-1994 homes that meet minimum federal 
construction standards established by HUD.  
 
Models’ Distribution in Time 
 
Over time, engineers and builders learned more about the interaction between wind and 
structures. More stringent building codes were enacted, which, when properly enforced, resulted 
in stronger structures. The weak, medium, and strong models, developed by the vulnerability 
team, represent this evolution of relative quality of construction in Florida.  Each set of models is 
representative of the prevalent wind vulnerability of buildings for a certain historical period. It is 
therefore important to define the cut-off dates between the different periods since the overall 
aggregate losses in any region are determined as a mixture of homes of various strengths (ages). 
The cut-off dates do not depend only on the evolution of the building code but also on the 
prevailing local builder/community code enforcement standards in each era. 
 
This issue of code enforcement has also evolved over time, and it is relatively recently that the 
State of Florida took an active role in uniform enforcement. Thus, a given county may have built 
to standards that were worse than or better than the code in place at the time. After consulting 
with building code development experts, the team concluded that the load provisions have had 
some wind provisions since at least the 1970s, and the issue is not only the code but also the 
enforcement of the code. The classifications shown in Table 21 were adopted for characterizing 
the regions by age and model. The specific building eras and classifications per region are based 
on the evolution of the building codes in Florida and the opinions of the experts consulted.  The 
strength descriptions within Table 21 are provided at the bottom of Table 21 in terms of the 
nomenclature used in Tables 1a and 1b.   
 



FPHLM V5.0

 

 
HVHZ 
  

Keys  

WBDR 

Inland 

Table 21

Strong:  
Strong_O
Modified
Medium:
Modified
Weak:   
Modified
 
Note: HV
 

 D8.
co

 
Appurten

 
Since the
vulnerab
damage, 
damage r
susceptib
wind dam
Because 
covered u
vulnerab

 
For comm
administr
pools, etc

0 2013 

Pre-1960 
⅔ modifie
Weak,  
⅓ Medium

½ modifie
Weak,  
½ Medium

modified 
Weak 
modified 
Weak 

 Nomenclatu

 
OP:   
d Strong:  
:   
d Medium:  

 
d Weak:  

VHZ is high 

Describe the
ontents, and

nant vulnera

e appurtenan
ility matrix i
three equati
ratio as a fun
ble to wind d
mage, and th
a typical ins
under a parti
le, and highl

mercial resid
ration buildi
c., the appur

Table 21. 

1960-19
ed 

m 

⅔ Weak
⅓ Medi

ed 

m 

Medium

⅔ Weak
⅓ Medi
⅔ Weak
⅓ Medi

ure with resp

S00 
S00-OP 
S01  
M00 
M10 
W00 
W10 

velocity hur

e developme
d time eleme

bility functio

nt structures 
is developed
ons were de

nction of win
damage, the 
he third predi
surance portf
icular policy
ly vulnerable

dential struct
ing, which ar
rtenant struct

Age classific

970 1971
k,  
ium 

½ W
½ m
Med

m Med

k,  
ium 

⅓ W
⅔ M

k,  
ium 

½ W
½ M

pect to Table

rricane zone

ent of the v
ent. 

ons 

damage is n
d for appurte
veloped. Eac
nd speed. On
second pred
icts damage 
folio file giv
y, a distributi
e) must be a

tures, appurt
re treated lik
tures model 

228 

cation of the 

1-1980 19
Weak,  

odified 
dium 

⅔
⅓
M

dium M

Weak, 
Medium 

⅓
⅔

Weak,    
Medium 

½
½

es 1a and 1b

e; WBDR is w

vulnerability

ot derived fr
enant structu
ch determine
ne equation p

dicts damage 
for structure

ves no indica
ion of the th

assumed and 

tenant struct
ke additional
developed f

models per r

981-1993 
⅔ Weak,  
⅓ modified 
Medium 

Medium 

⅓ Weak, 
⅔ Medium 
½ Weak,  
½ Medium 

b          

wind-borne 

y functions 

rom the buil
ures. To mod
es the appur
predicts dam
 for structur
es that are af
ation of the t
hree types (sl

is validated

tures might i
l buildings. F
for residentia

region. 

1994-2001
Modified 
Strong 

⅓ Medium
⅔ Strong_

½ Medium
½ Strong_
½ Medium
½ Strong 

debris regio

for appurt

ding damage
del appurtena
rtenant struct
mage for stru
res moderate
ffected only 
type of appur
lightly vulne

d against the 

include a clu
For other str
al buildings 

1 2002
Modi
Stron

m 
_OP 

Stron

m, 
_OP 

Stron

m,   Stron

on. 

tenant struc

e, only one 
ant structure
ture insured 

uctures highl
ely susceptib

slightly by w
rtenant struc

erable, mode
claim data. 

ubhouse or 
ructures such
is applicable

-pres. 
ified 
ng 

ng_OP 

ng_OP 

ng 

ctures, 

 

ly 
le to 
wind. 
cture 
erately 

h as 
e. 



FPHLM V5.0 2013 
229 

 

 
 
Interior damage, contents and time element vulnerability functions 

 
The computation of damage is a 3 stage process as described in Figure 50. The first stage 
corresponds to the external damage assessment through Monte Carlo simulations as discussed 
above. In the personal residential model, this is complemented by an empirical estimate of water 
penetration from wind driven rain due to exterior breaches or leakage paths in undamaged 
structures. The second stage corresponds to the computation of internal and utilities damage. 
Damage to the interior and utilities occurs when the building envelope is breached, allowing wind 
and rain to ingress. The cost of repairing this damage is highly variable. Damage to roof 
sheathing, roof cover, walls, windows, doors, and gable ends present the possible threat of 
cascading interior damage. Interior damage equations are derived as functions of each of these 
modeled components. These relationships are developed primarily on the basis of experience and 
engineering judgment. Observations of homes damaged during the 2004 hurricane season 
(Gurley, 2006) helped to validate the predictions. Utilities damage is then extrapolated from 
interior damage. 
 
 

 

Exterior 

Damage 

Interior 

Damage 

Utilities 

Damage 

Contents 

Damage 

Additional 

Living Expenses 

Stage 1 Stage 2 Stage 3 

Building Damage 

Water Leaks 

without damage 

Empirical relationships Appurtenant 

Structures 

 
Figure 50. Components of the vulnerability model.  Arrows indicate empirical relationships. 

 
The third stage in the damage estimation (Figure 50) extrapolates the damage to contents and 
additional living expenses (ALE) from the interior damage. Contents include anything in the 
home that is not attached to the structure itself. Like the interior and utilities, the contents of the 
home are not modeled in the exterior damage Monte Carlo simulations. Contents damage is 
assumed to be a function of the interior damage caused by each exterior component failure that 
causes a breach of the building envelope. The functions are based on engineering judgment and 
validated using claims data. 
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Personal Residential 
 

Contents losses are a function of the internal damage.  These empirical functions are based on 
engineering judgment and were validated against claim data for Hurricanes Andrew, Charley, and 
Frances, among others.  Figure 55 shows masonry claims data from Hurricane Andrew, the cubic 
polynomial trend fit, and the model curve for the High Velocity Hurricane Zone (HVHZ), which 
consists of Miami-Dade and Broward counties.  Notice that in this case the fit between model and 
data is reasonable where the density of data is higher. 
 
 
 

 
Figure 55. Modeled vs. actual relationship between structure and content damage ratios for 

Hurricane Andrew. 

 
Commercial Residential 
 
Contents damage in low-rise buildings (three stories or fewer) is modeled as a proportion of 
interior damage.  The interior damage is determined by vulnerability functions which correspond 
to different combinations of wall type (frame or masonry), sub-region (high velocity hurricane 
zone, wind-borne debris region, inland), roof shape (gable or hip), roof cover (metal, tile or 
shingle), window protection (shuttered or not shuttered), number of stories (one, two, or three), 
and strength (weak, medium, or strong). 
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V-3 Mitigation Measures 
 
A. Modeling of mitigation measures to improve a structure’s wind resistance and 

the corresponding effects on vulnerability shall be theoretically sound and 
consistent with fundamental engineering principles.  These measures shall 
include fixtures or construction techniques that enhance the performance of 
the structure and its contents and shall consider: 

 
 Roof strength 
 Roof covering performance 
 Roof-to-wall strength 
 Wall-to-floor-to-foundation strength 
 Opening protection 
 Window, door, and skylight strength. 

 
Modeling of mitigation measures to improve a structure’s wind resistance is theoretically sound 
and includes the fixtures mentioned above. The following structures were modeled: 
 
 Base case as defined by Commission 
 Mitigated case as defined by Commission 
 Base plus one mitigation at a time 
 
The mitigations included gable bracing, rated shingles, metal roof, stronger sheathing capacity, 
stronger roof-to-wall connections, stronger wall-to-sill connections, masonry reinforced walls, 
multiple opening protection options, and wind/missile resistant glass. 
 
B. Application of mitigation measures that enhance the performance of the 

structure and its contents shall be justified as to the impact on reducing 
damage whether done individually or in combination. 

 
The base cases are very weak cases, where the interior damage is governed by the sheathing loss 
at low to moderate wind speeds. The application of mitigation measures is justified and the results 
show the following. 
 
Bracing the gable end, using rated shingles, using a membrane, or using a metal roof alone does 
not provide any benefit when all other components remain weak, as required by Form V-2. For 
example, regardless of the type of roof cover used, if the home loses its weak sheathing panels, 
there will be little benefit in mitigating the roof cover or gable end alone. Combining mitigation 
measures, however, does indeed reduce the vulnerability of the home, as demonstrated in the 
bottom section of Form V-2. The observed negative values in Form V-2 corresponding to the 
braced gable end mitigation are from round off of smaller values within the uncertainty scatter of 
the model and indicate zero change. 
 
The hip roof has a greater impact in reducing the losses, especially in the case of frame structures.  
Because the base frame structure is inherently weaker, there is comparatively a higher gain with 
the hip timber structure than with the hip masonry structure. For example, a weak home with a hip 
roof is not vulnerable to gable end collapse. 
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In summary, mitigation options may be selected individually or in combination, but the effects of 
a given mitigation on other components and on overall building vulnerability, should not be and 
are not isolated in the model. 
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Form V-1: One Hypothetical Event 
 
A. Windspeeds for 335 ZIP Codes and sample personal and commercial residential exposure 

data are provided in the file named “FormV1Input11.xls.” The windspeeds and ZIP Codes 
represent a hypothetical hurricane track. Model the sample personal and commercial 
residential exposure data provided in the file against these windspeeds at the specified ZIP 
Codes and provide the damage ratios summarized by windspeed (mph) and construction 
type. 

 
The wind speeds provided are one-minute sustained 10-meter wind speeds.  The sample personal 
and commercial residential exposure data provided consist of four structures (one of each 
construction type: wood frame, masonry, mobile home, and concrete) individually placed at the 
population centroid of each of the ZIP Codes provided.  Each ZIP Code is subjected to a specific 
wind speed.  For completing Part A, Estimated Damage for each individual wind speed range is 
the sum of Ground Up Loss to all structures in the ZIP Codes subjected to that individual wind 
speed range, excluding demand surge and storm surge.  Subject Exposure is all exposures in the 
ZIP Codes subjected to that individual wind speed range.  For completing Part B, Estimated 
Damage is the sum of the Ground Up Loss to all structures of a specific type (wood frame, 
masonry, mobile home, or concrete) in all of the wind speed ranges, excluding demand surge and 
storm surge.  Subject Exposure is all exposures of that specific type in all of the ZIP Codes. 
 
One reference structure for each of the construction types shall be placed at the population center 
of the ZIP Codes. Do not include contents, appurtenant structures, or time element coverages. 
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Reference Frame Structure: 

One story 

Unbraced gable end roof 

Normal shingles (55mph) 

½” plywood deck 

6d nails, deck to roof members 

Toe nail truss to wall anchor 

Wood framed exterior walls 

5/8” diameter anchors at 48” centers for 
wall/floor/foundation connections         

No shutters 

Standard glass windows 

No door covers 

No skylight covers 

Constructed in 1980 

Reference Masonry Structure: 

One story 

Unbraced gable end roof 

Normal shingles (55mph) 

½” plywood deck 

6d nails, deck to roof members 

Toe nail truss to wall anchor 

Masonry exterior walls 

No vertical wall reinforcing 

No shutters 

Standard glass windows 

No door covers 

No skylight covers 

Constructed in 1980 

 

Reference Mobile Home Structure: 

Tie downs 

Single unit 

Manufactured in 1980 

Reference Concrete Structure: 

Twenty story 
 Eight apartment units per story 

 No shutters 
 Standard glass windows 

Constructed in 1980 
 
B. Confirm that the structures used in completing the form are identical to those in the above 

table for the reference structures. If additional assumptions are necessary to complete this 
form (for example, regarding structural characteristics, duration or surface roughness), 
provide the reasons why the assumptions were necessary as well as a detailed description of 
how they were included. 

 
The modelers do confirm that the structures used in completing the form are identical to those in 
the table provided in the standard. 
 
C. Provide a plot of the Form V-1, Part A data.  

 
See Figures 56 through 61 in Part C of Form V-1. 
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Form V-1: One Hypothetical Event 
 
Part A 

 
All reference structures combined. 

 
Wind Speed (mph )

1 min sustained 
Wind 

Estimated Damage/ 
Subject Exposure 

41-50 0.00% 
51-60 0.05% 
61-70 0.37% 
71-80 1.08% 
81-90 3.26% 

91-100 7.17% 
101-110 10.72% 
111-120 15.68% 
121-130 21.46% 
131-140 23.47% 
141-150 27.92% 
151-160 29.46% 
161-170 31.61%

 
 
Only personal residential  reference structures combined (Timber + Masonry + MH). 

 
Wind Speed (mph )

1 min sustained 
Wind 

Estimated Damage/ 
Subject Exposure 

41-50 0.00% 
51-60 0.68% 
61-70 2.56% 
71-80 3.69% 
81-90 6.37% 

91-100 10.71% 
101-110 14.46% 
111-120 20.30% 
121-130 33.72% 
131-140 37.15% 
141-150 51.02% 
151-160 56.50% 
161-170 69.67%
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Only commercial residential  reference structures (Concrete). 
 

Wind Speed (mph )
1 min sustained 

Wind 

Estimated Damage/ 
Subject Exposure 

41-50 0.00% 
51-60 0.03% 
61-70 0.32% 
71-80 1.03% 
81-90 3.20% 

91-100 7.10% 
101-110 10.65% 
111-120 15.59% 
121-130 21.21% 
131-140 23.19% 
141-150 27.45% 
151-160 28.92% 
161-170 30.85%

 
Part B 

Construction 
Type 

Estimated Damage/
Subject Exposure 

Wood Frame 3.84% 

Masonry 3.30% 

Mobile Home 10.47%

Concrete 3.06%

 
The structures used in completing the form are identical to those in the table provided. 
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Form V-2: Mitigation Measures – Range of Changes in Damage 
 
A. Provide the change in the zero deductible personal residential reference structure damage 

rate (not loss cost) for each individual mitigation measure listed in Form V-2 as well as for 
the combination of the four mitigation measures provided for the Mitigated Frame Structure 
and the Mitigated Masonry Structure below.   

 
See Form V-2 below. 
 
B. If additional assumptions are necessary to complete this Form (for example, regarding 

duration or surface roughness), provide the rationale for the assumptions as well as a 
detailed description of how they are included. 

   
C. Provide this Form on CD in Excel format without truncation.  The file name shall include the 

abbreviated name of the modeling organization, the standards year, and the form name.  A 
hard copy of Form V-2 shall be included in a submission appendix.  
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Reference Frame Structure: 
One story 
Unbraced gable end roof 
Normal shingles (55mph) 
½” plywood deck 
6d nails, deck to roof members 
Toe nail truss to wall anchor 
Wood framed exterior walls 
5/8” diameter anchors at 48” centers for 
wall/floor/foundation connections         
No shutters 
Standard glass windows 
No door covers 
No skylight covers 
Constructed in 1980 
 

Mitigated Frame Structure: 
Rated shingles (110mph) 
8d nails, deck to roof members 
Truss straps at roof 
Plywood Shutters 
 

Reference Masonry Structure: 
One story 
Unbraced gable end roof 
Normal shingles (55mph) 
½” plywood deck 
6d nails, deck to roof members 
Toe nail truss to wall anchor 
Masonry exterior walls 
No vertical wall reinforcing 
No shutters 
Standard glass windows 
No door covers 
No skylight covers 
Constructed in 1980 
 
 

Mitigated Masonry Structure: 
Rated shingles (110mph) 
8d nails, deck to roof members 
Truss straps at roof 
Plywood Shutters 

 

 
Reference and mitigated structures are fully insured structures with a zero deductible building 
only policy. 
 
Place the reference structure at the population centroid for ZIP Code 33921 located in Lee 
County. 
 
Wind speeds used in the Form are one-minute sustained 10-meter wind speeds. 
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Form V-3: Mitigation Measures – Mean Damage Ratio 
 
A. Provide the mean damage ratio (prior to any insurance considerations) to the reference 

structure for each individual mitigation measure listed in Form V-3 as well as the percent 
damage for the combination of the four mitigation measures provided for the Mitigated 
Frame Structure and the Mitigated Masonry Structure below.  

 
See Form V-3 below. Notice that for the 60 mph column all the vulnerabilities coincide at 6%. 
This is because at these low wind speeds, no significant damage is activated to trigger any 
significant difference between the different cases. 
 
B. If additional assumptions are necessary to complete this Form (for example, regarding 

duration or surface roughness), the modeler shall provide the rationale for the assumptions 
as well as a detailed description of how they are included. 

   
C. Provide a graphical representation of the vulnerability curves for the reference structure and 

the fully mitigated structure. 
 
See Figure 62, Figure 63, Figure 64 and Figure 65. Because there are too many vulnerability 
curves to plot in one figure, for the sake of clarity, the mitigations were divided in four sets for 
both masonry and frame structures. In each figure, there are two horizontal axes: the upper axis 
represents the actual terrain three-second gust winds; the lower axis represents the actual terrain 
one-minute sustained winds. The conversion between three-second gust and one-minute sustained 
winds depends on the roughness of the terrain. Therefore, on each plot, the value of the roughness 
parameter for Lee County is indicated. Finally, please note that, as explained in the previous 
section, mitigating the roof shingles alone, or the metal roof alone, or the membrane alone 
without mitigating the roof deck (upgrading nail size and or spacing) or the roof-to-wall 
connections does not improve the overall vulnerability of the structure. Consequently, in Figure 
62, Figure 63, Figure 64 and Figure 65, the curves for the base case and the rated shingle, metal 
roof, and membrane cases are superimposed on each other. This result is dependent on the base 
case weak sheathing connection and should not be interpreted to imply that reroofing is not an 
effective mitigation. Reroofing is only ineffective for the case of a very weak roof deck. The 
combination of re-nailing the decking and reroofing (now required practice) is an effective 
mitigation.  
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Reference Frame Structure: 
One story 
Unbraced gable end roof 
Normal shingles (55mph) 
½” plywood deck 
6d nails, deck to roof members 
Toe nail truss to wall anchor 
Wood framed exterior walls 
5/8” diameter anchors at 48” centers for 
wall/floor/foundation connections         
No shutters 
Standard glass windows 
No door covers 
No skylight covers 
Constructed in 1980 
 

Mitigated Frame Structure: 
Rated shingles (110mph) 
8d nails, deck to roof members 
Truss straps at roof 
Plywood Shutters 
 

Reference Masonry Structure:  
One story 
Unbraced gable end roof 
Normal shingles (55mph) 
½” plywood deck 
6d nails, deck to roof members 
Toe nail truss to wall anchor 
Masonry exterior walls 
No vertical wall reinforcing 
No shutters 
Standard glass windows 
No door covers 
No skylight covers 
Constructed in 1980 
 

 
Mitigated Masonry Structure: 

Rated shingles (110mph) 
8d nails, deck to roof members 
Truss straps at roof 
Plywood Shutters 

 

 
Reference and mitigated structures are fully insured building structures with a zero deductible 
building only policy. 
 
Place the reference structure at the population centroid for ZIP Code 33921 located in Lee 
County.  
  
Wind speeds used in the Form are one-minute sustained 10-meter wind speeds. 
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<CompanyName>_PERSONAL_Loss_Zipcode_ConstType.xls 
<CompanyName>_PERSONAL_Loss_County_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_PolicyForm.xls 
<CompanyName>_PERSONAL_Loss_PolicyForm_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_PolicyForm_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_ConstType_PolicyForm_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_ConstType_PolicyForm_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_ConstType_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_PolicyForm.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_County_PolicyForm_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_PolicyForm_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_County_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_ConstType_PolicyForm.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_ConstType_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_PolicyForm_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_ConstType_PolicyForm_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_PolicyForm_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_PolicyForm_TerritoryCode.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_PolicyForm_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_Zipcode_ConstType_PolicyForm_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_PolicyForm_TerritoryCode_ProgramCode.xls 
<CompanyName>_PERSONAL_Loss_County_ConstType_PolicyForm_TerritoryCode_ProgramCode.xls 
 
There will be 9 files in the report for commercial residential policies with names as below: 
 
< CompanyName>_COMMERCIAL_Loss_ConstType.xls 
<CompanyName>_COMMERCIAL_Loss_County.xls 
<CompanyName>_COMMERCIAL_Loss_TerritoryCode.xls 
<CompanyName>_COMMERCIAL_Loss_Zipcode.xls 
<CompanyName>_COMMERCIAL_Loss_ConstType_TerritoryCode.xls 
<CompanyName>_COMMERCIAL_Loss_County_ConstType.xls 
<CompanyName>_COMMERCIAL_Loss_Zipcode_ConstType.xls 
<CompanyName>_COMMERCIAL_Loss_County_TerritoryCode.xls 
<CompanyName>_COMMERCIAL_Loss_County_ConstType_TerritoryCode.xls 
 
There will be 9 files in the report for combined personal and commercial residential policies with names as below: 
 
< CompanyName>_Loss_ConstType.xls 
<CompanyName>_Loss_County.xls 
<CompanyName>_Loss_TerritoryCode.xls 
<CompanyName>_Loss_Zipcode.xls 
<CompanyName>_Loss_ConstType_TerritoryCode.xls 
<CompanyName>_Loss_County_ConstType.xls 
<CompanyName>_Loss_ZIPcode_ConstType.xls 
<CompanyName>_Loss_County_TerritoryCode.xls 
<CompanyName>_Loss_County_ConstType_TerritoryCode.xls 
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Florida Public Hurricane Loss Model:  Version 5.0  
Inputs for Personal Residential Policies 

 
Provide input data only for policies that include wind coverage. The policy records should be saved in .txt files with 
the following format: 

 
PolicyID,Zipcode,YearBuilt,ConstructionType,PropertyValue,StructureCoverage,AppCoverage,ContentCoverage, 
ALECoverage,Deductible,HurricaneDeductible,NatureOfCoverage,County,Address,City,Form,Programcode,TerritoryCod
e, Year retrofitted,NumberOfStories,LocationOfUnit,NumberOfUnits,Areaof building,Roof shape,Roof cover,Roof 
membrane,Roof to wall connection,  DeckAttachment,Garage door,Opening protection. 
 
 
1.  Minimum Required Attributes: 
 
PolicyID:   the unique ID for this policy 
Zipcode:   5-digit ZIP Code where this building is located 
YearBuilt:   4-digit year number when this building was built (if not known enter UNKNOWN) 
ConstructionType:  the construction type for this building, which is with one of the following types: Frame, 

Masonry, Manufactured, Other, or Unknown  
PropertyValue:   the dollar amount value for this building (if not known enter UNKNOWN) 
StructureCoverage:  the structure coverage amount in dollars 
AppCoverage:   the appurtenant structure coverage amount in dollars (enter 0 if none) 
ContentCoverage:  the content coverage amount in dollars (enter 0 if none) 
ALECoverage:   the additional living expense coverage amount in dollars (enter 0 if none) 
Deductible:   deductible amount in dollars for perils other than hurricane (convert percentage deductibles to 
dollar amount) 
HurricaneDeductible:  hurricane deductible amount in dollars (convert percentage deductibles to dollar amount) 
NatureOfCoverage:  the settlement option on the structure using one letter R or A to represent Replacement Cost or 

Actual Cash Value, respectively 
County:   the name of the county where the building is located 
Address:  the street address or longitude, latitude of the building in that order 
City:   the name of the city where the building is located 
Form:   Policy Form (HO-1,HO-2,HO-3,HO-5,HO-8,HO-4,HO-6 etc.)  
ProgramCode:  use one letter (A, B, C, etc) to represent each company program 
TerritoryCode:  use the territory codes reflected in your rate manual  
 
2.  Seconndary Modifier 
Year retrofitted: 4 digit year when the property was retrofitted (brought up to code) if applicable. If not 

retrofitted enter 0000, if not known enter UNKNOWN 
Number of stories: 1,2,3, etc. or UNKNOWN (Number of stories in the building) 
Location of unit:  1,2,3,4, etc. or UNKNOWN (1 = first story, 2 = second story, etc) for condominium 
Number of units: 1,2,3,4, etc. or UNKNOWN (Number of units in the building) for condominium 
Area of building: Total number of square feet for all floors (enter 25,000 square feet as 25000)  
Roof shape:   unbraced gable=1, braced gable=2, gable (bracing unknown)=3, hip =4, other=5, unknown=6     
Roof cover: unrated shingles=1, rated shingles(current FBC)=2, shingles(ratings unknown)=3,  tiles=4, 

metal=5, other=6, unknown=7 
Roof membrane: regular underlayment=1, secondary water resistance=2, unknown=3 
Roof to wall connection: toe nails=1, clips=2, straps=3, other=4, unknown=5 
Deck Attachment: planks=1, 6d@6/12”=2, 8d@6/12”=3, 8d@6/6”=4, unknown=5 
Garage door:  unbraced=1, braced=2, unknown=3 
Opening protection plywood=1, metal=2, impact resistant glass=3, no protection=4, unknown=5 
 
2. Examples 
1,33143,1977,Masonry,162000,162000,16200,124000,0,0,250,R,Miami-Dade,1000 SW 1000 Street,Miami,HO-
3,A,30,1998,2,1,3,2500, 2,3,2,3,3,3,2 
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Note: the attributes should be separated by comma only. 

 
Florida Public Hurricane Loss Model:  Version 5.0  
Inputs for Commercial Residential Policies 

 
Provide input data for the Florida Public Hurricane Loss Model that meets the following specifications: 
The policy records should be saved in .txt files with the following format: 
 
PolicyID,Location ID,Building ID,Zipcode,YearBuilt,ConstructionType,Number of Stories,Number of Units,Property 
Value, 
StructureCoverage,AppCoverage,ContentCoverage,TimeElementCoverage,Deductible,HurricaneDeductible,Coinsurance,
NatureOfCoverage,County,Address,City,Form,ProgramCode,TerritoryCode, Year retrofitted,Roof shape,Roof cover,Roof 
membrane,Roof to wall connection, DeckAttachment,Appurtenant structure,Opening protection,Building layout, 
AreaofBuilding, Residential Type. 

 
1. Minimum Required Attributes: 
 
PolicyID:   the unique ID for this policy 
Location ID:                     the unique location id for building location 
Building ID:                       the unique ID for this building  
Zipcode:   5-digit ZIP Code where this building is located 
YearBuilt:   4-digit year number when this building was built. If not known, enter UNKNOWN 
ConstructionType:  the construction type for this building, which is with one of the following types: Frame,  

Masonry,Concrete,Steel,Other, or Unknown 
Number of Stories:          the number of floors in the building. If not known, enter UNKNOWN  
Number of Units:              the number of units in the building. If not known, enter UNKNOWN 
PropertyValue:   the dollar amount value for this building. If not known, enter UNKNOWN 
StructureCoverage:  the structure coverage amount in dollars 
AppCoverage:   the appurtenant structure coverage amount in dollars. Enter 0 if none 
ContentCoverage:  the content coverage amount in dollars. Enter 0 if none 
TimeElementCoverage:  the business income and extra expense coverage amount in dollars. Enter 0 if none 
Deductible:   deductible amount in dollars for perils other than hurricane (convert percentage deductibles to 
dollar amount) 
HurricaneDeductible:  hurricane deductible amount in dollars (convert percentage deductibles to dollar amount) 
Coinsurance:                   coinsurance percentage (e.g. for 80% enter 80) 
NatureOfCoverage:  the settlement option on the structure using one letter R or A to represent Replacement Cost or 

Actual Cash Value, respectively 
County:   the name of the county where the building is located 
Address:  the street address, city, or longitude, latitude of the building in that order 
City:   the name of the city where the building is located 
Form:   Policy Form (If company offers different base forms of coverage enter company code, otherwise 
enter 0)  
ProgramCode:  use one letter (A, B, C, etc.) to represent each company program 
TerritoryCode:  use the territory codes reflected in your rate manual  
 
2. Secondary Modifiers 
Year retrofitted: 4 digit year when the property was retrofitted (brought up to code) if applicable. If not 

retrofitted enter 0000, if not known enter UNKNOWN 
Roof shape:   unbraced gable=1, braced gable=2, gable (bracing unknown) =3, hip =4, other=5, unknown=6     
Roof cover: unrated shingles=1, rated shingles(current FBC)=2, shingles(ratings unknown)=3,  tiles=4, 

metal=5, other=6,  unknown=7 
Roof membrane:  regular underlayment=1, secondary water resistance=2, unknown=3 
Roof to wall connection:  toe nails=1, clips=2, straps=3, other=4, unknown=5 
Deck Attachment:  planks=1, 6d@6/12”=2, 8d@6/12”=3, 8d@6/6”=4, other=5,unknown=6 
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Table 25. Checklist for the Pre-processing. 

Note:  LMs is coverage limit for building structure, LMapp is coverage limit for appurtenant 
structure, LMc is coverage limit for contents, and LMale is coverage limit for time element. 
 

PolicyID 
 There are no null values. 
 All duplicates (if any) have valid policy information. 

 

Zipcode 
 There are no null values. 
 All values belong to the set of 5-digit zipcodes in Florida. 

 

YearBuilt 

 There are no null values (Note: policies with no YearBuilt should have for value 0). 
 All values are 4-digit numbers. 
 There are no values exceeding the current year. 
 There are no non-zero values less than 1700. 

 

ConstType 
 There are no null values. 
 All values are either masonry, frame, manufactured, or other. 

 

PropValue 

 There are no null values. 
 There are no negative values. 
 If all values are equal to 0, then they are updated to equal LMs. 
 The actual Property Values will be updated to the larger numeric value between  

Property Value and Structure Limit. 

 

LMs 
 There are no null or non-numeric values. 
 There are no negative values. 

 

LMapp 

 There are no null or non-numeric values. 
 There are no negative values. 
 If all values are equal to 0 (because it’s missing but the company covers Lmapp), 

Then they are updated to 10% of LMs.  (double check with Dr. Hamid) 

 

LMc 
 There are no null or non-numeric values. 
 There are no negative values. 

 

LMale 

 There are no null or non-numeric values. 
 There are no negative values. 
 If all values are equal to 0, then the ALE limits will be updated in the program as follows: 

(1) 20% of LMs or (2) 40% of LMc if LMs is zero but LMc > 0 
or (3) 40% of LMapp if both LMs and LMc are zero. 

 

Deduc 

 There are no null or non-numeric values. 
 There are no negative values. 
 All percentages are converted to numeric values.  (Sometimes the percentage are 

represented as 2, 5, 10, 02, 05, 000002, 000005, 000010 instead of 2%, 5%, 10%) 

 

HurrDeduc 

 There are no null or non-numeric values. 
 There are no negative values. 
 All percentages are converted to numeric values.  (Sometimes the percentage are  

represented as 2, 5, 10, 02, 05, 000002, 000005, 000010 instead of 2%, 5%, 10%). 
 Normally Hurricane Deductible should be no less than 500. 

 

Coverage 
 There are no null values. 
 The format is correct (i.e. value is equal to A or R). 

 

County 

 There are no null values. 
 All county names are spelled only one way (i.e. all caps & no spelling errors, etc.). 
 All names are counties in Florida. 
 For counties as Miami-Dade (Miami Dade, Dade), St. Johns (Saint Johns,  St Johns),  

St. Lucie (Saint Lucie, St Lucie), make sure only one type of spelling is used. 

 

PolicyForm 
 If the field is present values cannot be null. 
 The format is correct (i.e. value is equal to DP-3, HO-6, etc.). 

 

ProgramCode 
 If the field is present values cannot be null. 
 The format is correct (i.e. value is equal to A, B, etc.). 

 

TerritoryCode 
 If the field is present values cannot be null. 
 The format is correct (i.e. value is equal to 36, 11, etc.). 
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Missing attribute  
values 

If attributes of roof shape, roof cover, opening protection, roof to wall connection are all  
unknown use weighted matrix. If one or more of the attributes are known, use the values 
and replace the unknowns by randomly assigning values based on survey statistics and  
then use unweighted matrices. 
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General Form of the Demand Surge Functions 
 
The functions applied to determine the demand surge for each storm are of the form 
 
Structure:        Surge Factor = c  +  p1 x ln (statewide storm losses)  +  p2, 
                          

where      c is a constant, 
                p1 is a constant for all regions except Monroe County, 
                p2 varies by region, and  
                “statewide storm losses” are the estimated losses, before demand   
                surge, for the storm under consideration. 

 
Appurtenant Structures:           Surge Factor = Structure Factor. 
 
Contents:                             Surge Factor =   [ (Structure Factor – 1) x 30% ] + 1. 
 
Additional Living Expenses:     Surge Factor = 1.5 x Structure Factor  - .5. 
 
Development of the Demand Surge Function for Structure 
 
To estimate the impact of demand surge on the settlement cost of structural claims following a 
hurricane we used a quarterly construction cost index produced by Marshall & Swift/Boeckh. We 
considered the history of the index from first quarter 1992 through second quarter 2007.  There is 
an index for each of 52 ZIP Codes in Florida representing 42 counties. We grouped the indices to 
produce a set of regional indices, weighting each ZIP Code index with population.   
 
The approach to estimating structural demand surge was to examine the index for specific regions 
impacted by one or more hurricanes since 1992. From the history of the index, we projected what 
the index would have been in the period following the storm had no storm occurred. Any gap 
between the predicted and actual index was assumed to be due to demand surge. In total we 
examined ten storm–region combinations. From these ten observations of structural demand 
surge, we generalized to the functional relationship shown above.   
 
Monroe County was treated as an exception. There were no storms of any severity striking 
Monroe during the period of our observations.  We believe, though, that the location of and 
limited access to the Keys will result in an unusually high surge in reconstruction costs after a 
storm, particularly since the Overseas Highway could be damaged by storm surge or seriously 
blocked by debris. We have therefore judgmentally selected demand surge parameters for Monroe 
in excess of those indicated for the remainder of South Florida. 
 
Development of the Contents Demand Surge Function 
 
The approach to determining the contents demand surge function was to relate any surge in 
consumer prices in Southeast Florida following hurricanes Katrina and Wilma to the estimated 
structure demand surge following those storms. We used a sub-index of the Miami-Ft. Lauderdale 
Consumer Price Index for this purpose and compared the projected and actual indices after the 
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Personal Residential  
 
The additional living expense losses are based on an empirical function relating those losses to the 
interior damage to the structure. The model does not distinguish explicitly between direct and 
indirect loss to the structure, but the function is calibrated against claim data that include both 
types of losses. 
 
Commercial Residential 
 
The time element losses in low-rise buildings (three stories or fewer) are modeled using 
vulnerability functions that relate those losses to interior damage to the building. Time element 
losses in mid-rise and high-rise buildings (over three stories) are not modeled. 
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A-6 Loss Output  
 
A. The methods, data, and assumptions used in the estimation of probable 

maximum loss levels shall be actuarially sound.  
 
B. Loss costs shall not exhibit an illogical relation to risk, nor shall loss costs 

exhibit a significant change when the underlying risk does not change 
significantly.  

 
C. Loss costs produced by the model shall be positive and non-zero for all valid 

Florida ZIP Codes.  
 
D. Loss costs cannot increase as the quality of construction type, materials and 

workmanship increases, all other factors held constant.  
 
E. Loss costs cannot increase as the presence of fixtures or construction 

techniques designed for hazard mitigation increases, all other factors held 
constant. 

 
F. Loss costs cannot increase as the quality of building codes and enforcement 

increases, all other factors held constant. 
 
G. Loss costs shall decrease as deductibles increase, all other factors held 

constant. 
 
H. The relationship of loss costs for individual coverages, (e.g., structures and 

appurtenant structures, contents, and time element shall be consistent with the 
coverages provided. 

 
I. Output ranges shall be logical for the type of risk being modeled and 

deviations supported.  
 

J. All other factors held constant, output ranges produced by the model shall in 
general reflect lower loss costs for: 

 
1. masonry construction versus frame construction, 
 
2. personal residential risk exposure versus mobile home risk exposure, 
 
3. inland counties versus coastal counties, and 
 
4. northern counties versus southern counties.  
 

K. For loss cost and probable maximum loss level estimates derived from or 
validated with historical insured hurricane losses, the assumptions in the 
derivations concerning (1) construction characteristics, (2) policy provisions, 
(3) coinsurance, (4) contractual provisions, and (5) relevant underwriting 
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Form A-1: Zero Deductible Personal Residential Loss Costs by ZIP Code 
 
A. Provide three maps, color-coded by ZIP Code (with a minimum of 6 value ranges), 

displaying zero deductible personal residential loss costs per $1,000 of exposure for frame, 
masonry, and mobile home.  

 
B. Create exposure sets for these exhibits by modeling all of the structures from Notional Set 3 

described in the file “NotionalInput11.xlsx” geocoded to each ZIP Code centroid in the 
state, as provided in the model. Refer to the Notional Policy Specification below for 
additional modeling information. Explain any assumptions, deviations, and differences from 
the prescribed exposure information.  

 
C. Provide the underlying loss cost data rounded to 3 decimal places used for A. above in Excel 

and PDF format. The file name shall include the abbreviated name of the modeling 
organization, the standards year, and the form name. 

 
  



FPHLM V5.0

 

 
 

0 2013 

Figure 67. Ze

 

ero deductibl

291 

le loss costs bby ZIP code foor frame. 
 



FPHLM V5.0

 

 

 

0 2013 

FFigure 68. Zer

 

ro deductible

292 

e loss costs byy ZIP code forr masonry. 
 



FPHLM V5.0

 

0 2013 

Figure 69. Zero ddeductible lo

293 

ss costs by ZZIP code for mmobile homees. 
 



FPHLM V5.0 2013 

294 
 

 
Form A-2: Base Hurricane Storm Set Statewide Loss Costs 

 
A. Provide the total insured loss and the dollar contribution to the average annual loss 

assuming zero deductible policies from each specific hurricane in the Base Hurricane Storm 
Set, as defined in Standard M-1, for the 2007 Florida Hurricane Catastrophe Fund’s 
aggregate personal and commercial residential exposure data found in the file named 
“hlpm2007c.exe.”   

 
B. Provide this form in Excel format. The file name shall include the abbreviated name of the 

modeling organization, the standards year, and the form name. A hard copy of Form A-2 
shall be included in a submission appendix.  

 
See Appendix B. 
 
  



FPHLM V5.0 2013 

295 
 

Form A-3: Cumulative Losses from the 2004 Hurricane Season 
 
A. Provide the percentage of total residential zero deductible cumulative losses, rounded to four 

decimal places, from Hurricane Charley (2004), Hurricane Frances (2004), Hurricane Ivan 
(2004), and Hurricane Jeanne (2004) for each affected ZIP Code. Include all ZIP Codes 
where losses are equal to or greater than $500,000. 

 
Use the 2007 Florida Hurricane Catastrophe Fund’s aggregate personal and commercial 
residential exposure data found in the file named “hlpm2007c.exe.” 
 
Rather than using directly a specified published windfield, the winds underlying the loss cost 
calculations must be produced by the model being evaluated and should be the same 
hurricane parameters as used in completing Form A-2. 

 
B. Provide maps color-coded by ZIP Code depicting the percentage of total residential losses 

from each hurricane, Hurricane Charley (2004), Hurricane Frances (2004), Hurricane Ivan 
(2004), and Hurricane Jeanne (2004) and for the cumulative losses using the following 
interval coding: 

 

Red   Over 5% 
Light Red  2% to 5% 
Pink   1% to 2% 
Light Pink  0.5% to 1% 
Light Blue  0.2% to 0.5% 
Medium Blue  0.1% to 0.2% 
Blue   Below 0.1%    

 
C. Provide this form in Excel format. The file name shall include the abbreviated name of the 

modeling organization, the standards year, and the form name. A hard copy of Form A-3 
shall be included in a submission appendix. 

 
See Appendix C. 



FPHLM V5.0

 

Fi

0 2013 

igure 70. Perccentage of reesidential tota

296 

al losses by ZZIP code of Huurricane Charley (2004).
 



FPHLM V5.0

 

Fi

0 2013 

igure 71. Perccentage of reesidential tota

297 

al losses by ZZIP code of Huurricane Frannces (2004).
 



FPHLM V5.0

 

0 2013 

Figure 72. Peercentage of residential to

298 

otal losses byy ZIP code of Hurricane Ivaan (2004). 
 



FPHLM V5.0

 

Fig

0 2013 

gure 73. Perccentage of ressidential tota

299 

al losses by ZZIP code of HHurricane Jeeanne (2004).
 

. 



FPHLM V5.0

 

Figure 

0 2013 

74. Percentagge of residenntial total loss
Hurr

300 

ses by ZIP cod
ricane Season

de of the cum
n. 

mulative lossees from the 2
 

2004 



FPHLM V5.0 2013 

301 
 

Form A-4: Output Ranges 
 

 
A. Provide personal and commercial residential output ranges in the format shown in the file 

named “2011FormA4.xlsx” by using an automated program or script. A hard copy of Form 
A-4 shall be included in a submission appendix. Provide this form in Excel format. The file 
name shall include the abbreviated name of the modeling organization, the standards year, 
and the form name.  

 
B. Provide loss costs rounded to three (3) decimal places by county. Within each county, loss 

costs shall be shown separately per $1,000 of exposure for frame owners, masonry owners, 
frame renters, masonry renters, frame condo unit owners, masonry condo unit owners, 
mobile home, and commercial residential. For each of these categories using ZIP Code 
centroids, the output range shall show the highest loss cost, the lowest loss cost, and the 
weighted average loss cost. The aggregate residential exposure data for this form shall be 
developed from the information in the file named “hlpm2007c.exe,” except for insured value 
and deductibles information. Insured values shall be based on the output range specifications 
below. Deductible amounts of 0% and as specified in the output range specifications will be 
assumed to be uniformly applied to all risks. When calculating the weighted average loss 
costs, weight the loss costs by the total insured value calculated above. Include the statewide 
range of loss costs (i.e., low, high, and weighted average).  

 
C. If a modeling organization has loss costs for a ZIP Code for which there is no exposure, give 

the loss costs zero weight (i.e., assume the exposure in that ZIP Code is zero). Provide a list 
in the submission document of those ZIP Codes where this occurs.   

 
D. If a modeling organization does not have loss costs for a ZIP Code for which there is some 

exposure, do not assume such loss costs are zero, but use only the exposures for which there 
are loss costs in calculating the weighted average loss costs. Provide a list in the submission 
document of the ZIP Codes where this occurs. 

 
E. All anomalies in loss costs that are not consistent with the requirements of Standard A-6 and 

have been explained in Disclosure A-6.14 shall be shaded.   
 

Indicate if per diem is used in producing loss costs for Coverage D (ALE) in the personal 
residential output ranges. If a per diem rate is used in the submission, a rate of $150.00 per 
day per policy shall be used. 

 
See Appendix D. 
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Form A-5: Percentage Change in Output Ranges 
 
A. Provide summaries of the percentage change in average loss cost output range data 

compiled in Form A-4 relative to the equivalent data compiled from the previously accepted 
model in the format shown in the file named “2011FormA5.xlsx.” 

 
 For the change in output range exhibit, provide the summary by: 
 

 Statewide (overall percentage change), 
 By region, as defined in Figure 4 – North, Central and South,  
 By county, as defined in Figure 5 – Coastal and Inland. 

 
B. Provide this form in Excel format. The file name shall include the abbreviated name of the 

modeling organization, the standards year, and the form name. A hard copy of all tables in 
Form A-5 shall be included in a submission appendix.   

 
C. Provide color-coded maps by county reflecting the percentage changes in the average loss 

costs with specified deductibles for frame owners, masonry owners, frame renters, masonry 
renters, frame condo unit owners, masonry condo unit owners, mobile home, and commercial 
residential from the output ranges from the previously accepted model.  

 
Counties with a negative percentage change (reduction in loss costs) shall be indicated with 
shades of blue; counties with a positive percentage change (increase in loss costs) shall be 
indicated with shades of red; and counties with no percentage change shall be white. The larger 
the percentage change in the county, the more intense the color-shade.  
 
See Appendix E. 
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Form A-6: Personal Residential Output Ranges 
 
A. Provide the logical relationship to risk exhibits in the format shown in the file named 

“2011FormA6.xlsx.”   
 
B. Create exposure sets for each exhibit by modeling all of the structures from the appropriate 

Notional Set listed below at each of the locations in “Location Grid A” as described in the 
file “NotionalInput11.xlsx.” Refer to the Notional Policy Specifications below for additional 
modeling information. Explain any assumptions, deviations, and differences from the 
prescribed exposure information. 

  
Exhibit Notional Set 
Deductible Sensitivity Set 1 
Construction Sensitivity Set 2 
Policy Form Sensitivity Set 3 
Coverage Sensitivity Set 4 
Building Code/Enforcement (Year Built) Sensitivity Set 5 
Building Strength Sensitivity Set 6 
Condo Unit Floor Sensitivity Set 7 
Number of Stories Sensitivity Set 8 

 
Models shall treat points in Location Grid A as coordinates that would result from a 
geocoding process. Models shall treat points by simulating loss at exact location or by using 
the nearest modeled parcel/street/cell in the model. 

 
 Report results for each of the points in “Location Grid A” individually, unless specified. Loss 

cost per $1,000 of exposure shall be rounded to 3 decimal places. 
 
C. All anomalies in loss costs that are not consistent with the requirements of Standard A-6 and 

have been explained in Disclosure A-6.14 shall be shaded. 
 
See Appendix F. 
 
 
  



FPHLM V5.0 2013 

312 
 

Form A-7: Percentage Change in Logical Relationship to Risk 
 
A. Provide summaries of the percentage change in logical relationship to risk exhibits from the 

previously accepted model in the format shown in the file named “2011FormA7.xlsx.” 
 
B. Create exposure sets for each exhibit by modeling all of the structures from the appropriate 

Notional Set listed below at each of the locations in “Location Grid B” as described in the file 
“NotionalInput11.xlsx.” Refer to the Notional Policy Specifications provided in Form A-6 for 
additional modeling information. Explain any assumptions, deviations, and differences from 
the prescribed exposure information.   

 
Exhibit Notional Set 
Deductible Sensitivity Set 1 
Construction Sensitivity Set 2 
Policy Form Sensitivity Set 3 
Coverage Sensitivity Set 4 
Building Code/Enforcement (Year Built) Sensitivity Set 5 
Building Strength Sensitivity Set 6 
Condo Unit Floor Sensitivity Set 7 
Number of Stories Sensitivity Set 8 

 
Models shall treat points in Location Grid B as coordinates that would result from a 
geocoding process. Models shall treat points by simulating loss at exact location or by using 
the nearest modeled parcel/street/cell in the model. 

 
Provide the results statewide (overall percentage change) and by the regions defined in Form 
A-5. 

 
C. Provide this form in Excel format. The file name shall include the abbreviated name of the 

modeling organization, the standards year, and the form name. A hard copy of all tables in 
Form A-7 shall be included in a submission appendix.   

 
See Appendix G. 
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Form A-8:  Probable Maximum Loss for Florida 
 
 
A. Provide a detailed explanation of how the Expected Annual Hurricane Losses and Return 

Periods are calculated.  
 
For each range of losses: 
 
Expected Annual Hurricane Losses = Total Loss / Number of years in the simulation,  
 
Where: 
 
Total Loss = Sum of losses for all simulated years with aggregate storm losses in the range. 
 
Return Period =  1 / Probability of exceeding the average loss in the range,  
  
Where: 
 
Average Loss = Total Loss / Number of years with aggregate storm losses in the range, 
 
And 
 
Probability of exceeding the average loss in the range =  
 
(Number of years with aggregate storm losses > Average Loss)   /   Number of years in the 
simulation. 

 
B. Complete Part A showing the personal and commercial residential probable maximum loss 

for Florida. For the Expected Annual Hurricane Losses column, provide personal and 
commercial residential, zero deductible statewide loss costs based on the 2007 Florida 
Hurricane Catastrophe Fund’s aggregate personal and commercial residential exposure data 
found in the file named “hlpm2007c.exe.” 

 
In the column, Return Period (Years), provide the return period associated with the average loss 
within the ranges indicated on a cumulative basis.   

 
 For example, if the average loss is $4,705 million for the range $4,501 million to $5,000 million, 

provide the return period associated with a loss that is $4,705 million or greater.   
 
For each loss range in millions ($1,001-$1,500, $1,501-$2,000, $2,001-$2,500) the average loss 
within that range should be identified and then the return period associated with that loss 
calculated. The return period is then the reciprocal of the probability of the loss equaling or 
exceeding this average loss size. 
 
The probability of equaling or exceeding the average of each range should be smaller as the 
ranges increase (and the average losses within the ranges increase). Therefore, the return period 
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Since the sample is large enough to assume a normal approximation for the pth quantile of the 
ordered set, an approximate 95% confidence interval for the PML is given by (X(r), X(s)), where 
 

                    r  Np1.96 Np(1 p)  

 
 s  Np1.96 Np(1 p)  

  
and N and p are defined as in Standard A-11, i.e. 
 
           N = number of years in the simulation 
and       
             p = 1 –   1 / return period.   
 
If r and/or s are not integers, let r* be the smallest integer greater than r and let s* be the smallest 
integer greater than or equal to s. The 95% approximate confidence interval is given by (X(r*), 
X(s*)) 
 
The top event itself is estimated by the highest order statistic, X(N).   Although it is not possible to 
compute a confidence interval for the top event using the above methods, an upper bound can be 
placed on the expected top event, E(X(N)).  
 

As per Wilkinson (1982),   E(X(N))   
(N  1)

2N  1
 

   
 
where  and  are the mean and the standard deviation of the losses, respectively. 
 
Thus an upper bound for the top even is computed as: 
 

 X 
(N  1)s

2N  1
 

 
where X  is the sample mean of the simulated annual losses and s is the sample standard 
deviation. 
 
E. Provide this form in Excel format. The file name shall include the abbreviated name of the 

modeling organization, the standards year, and the form name. A hard copy of Form A-8 shall 
be included in a submission appendix. 

 
See Appendix H. 
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1996). This framework is consistent with that used by the National Hurricane Center (NHC) and 
is readily converted to wind load frameworks used in building codes.  
 
Based on a qualitative examination of various observing platforms and methods used to 
standardize observations, Powell et al. (2005) suggest that the uncertainty of the maximum wind 
from a given analysis ranges from 10-20% depending on the observing platform. In general the 
uncertainty of a given H*Wind analysis is of the order of 10% for analysis of Hurricanes Ivan, 
Frances, Jeanne, and Katrina, all of which incorporated  more accurate surface wind 
measurements from the Stepped Frequency Microwave Radiometer (SFMR) aboard the NOAA 
research aircraft. The SFMR data used for those analyses was post-processed during the fall of 
2005 using the latest geophysical model function relating wind speed to sea surface foam 
emissivity. Hurricanes Charley, Dennis, Rita, Wilma, and Andrew did not have the benefit of 
SFMR measurements but relied on adjusting Air Force reconnaissance observations at the 3 km 
altitude to the surface with empirical reduction methods. The method used was based on how 
SFMR measurements compared to flight level winds and depended on storm relative azimuth. 
Preliminary results suggest that this method has an uncertainty of 15%. 
 
We created wind swaths for both the modeled and observed winds. We also computed the 
maximum winds at ZIP Codes for both the observed and modeled winds; from that we derived the 
mean and root-mean-square error (see Table 26 and Table 27). 

WIND SWATHS 

For each storm in the validation set, the peak sustained surface wind speed is recorded at each ZIP 
Code in Florida for the duration of the storm event. Observed wind fields from H*Wind and 
modeled wind fields from the public model are moved along the exact same tracks, which are the 
observed high-resolution storm tracks assembled from reconnaissance aircraft and radar data.  For 
each storm, the recorded peak of the observed and modeled wind speed is saved at each grid point 
and each ZIP Code, and the resulting ZIP Code comparison pairs provide the basis for the model 
validation statistics.  The peak grid point values are color contoured and mapped as graphics 
showing the “swath” of maximum winds swept out by the storm passage. Wind swaths are 
sometimes confused with wind fields. The winds depicted in a wind swath do not have time 
continuity, cannot depict a circulation, and therefore cannot be described as a wind field.  A wind 
field represents a vector field that represents a representative instance of the surface wind 
circulation. 
 
Wind swaths were constructed for both the modeled and observed winds. Maximum marine 
exposure winds were compared at all ZIP Codes for both the observed and modeled winds (Figure 
87) from which we derived the mean and root-mean-square error statistics shown in Table 26 and 
Table 27. This type of comparison provides an unvarnished assessment of model performance. 
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Table 26. Validation Table based on ZIP Code wind swath comparison of the Public wind field model to 
H*Wind.  Mean errors (bias) of model for the set of validation wind swaths.  Errors (upper number in 
each cell) are computed as Modeled – Observed (Obs) at ZIP Codes were modeled winds were within 
wind thresholds (model threshold) or where observed winds were within respective wind speed 
threshold (H*Wind threshold).  Number of ZIP Codes for the comparisons is indicated as the lower 

number in each cell. 

Storms Year 
56-74 
Model 

Threshold 

75-112 
Model 
Thresh. 

>112mph 
Model 
Thresh. 

>56mph 
Model 
Thresh. 

56-74 
H*Wind 
Thresh. 

75-112 
H*Wind 
Thresh. 

>112mph 
H*Wind 
Thresh. 

>56mph 
H*Wind 
Thresh. 

Andrew 1992 
5.25 
92 

13.86 
107 

2.73 
100 

7.49 
299 

10.26 
139 

12.47 
54 

0.66 
88 

7.68 
281 

Charley 2004 
12.96 
112 

21.36 
244 

-7.36 
13 

17.80 
369 

8.58 
122 

-3.09 
63 

-8.91 
17 

3.47 
202 

Frances 2004 
3.99 
693 

-0.99 
96 

None 
3.38 
789 

-0.59 
372 

-4.48 
96 

None 
-1.38 
468 

Ivan 2004 
-6.95 

20 
-3.35 

38 
None 

-4.59 
58 

-5.76 
22 

-3.73 
41 

None 
-4.44 

63 

Jeanne 2004 
6.78 
250 

3.95 
190 

None 
5.56 
440 

2.67 
225 

-3.87 
121 

None 
0.38 
346 

Dennis 2005 
2.45 
15 

6.98 
46 

None 
5.87 
61 

5.22 
29 

7.57 
29 

-4.37 
3 

5.87 
61 

Dennis 
Keys 

2005 None None None None 
-12.65 

5 
None None 

-12.65 
5 

Katrina 2005 
-11.43 

77 
-2.42 
100 

None 
-6.34 
177 

-8.93 
93 

-11.57 
149 

None 
-10.55 

242 

Rita 2005 
6.28 

5 
14.54 

3 
None 

9.38 
8 

12.01 
5 

None None 
12.01 

5 

Wilma 2005 
0.44 
133 

-9.99 
394 

None 
-7.35 
527 

6.54 
87 

-13.35 
396 

None 
-9.77 
483 
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Table 27. Validation Table based on ZIP Code wind swath comparison of the Public wind field model to 
H*Wind.  Root mean square (RMS) wind speed errors (mph) of model for the set of validation wind 
swaths.  Errors are based on Modeled – Observed (Obs) at ZIP Codes where modeled winds were 

within wind thresholds (model threshold) or where observed winds were within respective wind speed 
threshold (H*Wind threshold). 

Storms Year 
56-74 
Model 

Threshold 

75-112 
Model 
Thresh. 

>112mph 
Model 
Thresh. 

>56mph 
Model 
Thresh. 

56-74 
H*Wind 
Thresh. 

75-112 
H*Wind 
Thresh. 

>112mph 
H*Wind 
Thresh. 

>56mph 
H*Wind 
Thresh. 

Andrew 1992 6.11 15.75 7.024 10.81 12.19 14.26 5.82 11.10 

Charley 2004 19.84 26.59 10.08 24.30 16.65 8.60 11.69 14.21 

Frances 2004 8.08 11.20 None 8.52 4.99 10.20 None 6.41 

Ivan 2004 7.07 5.20 None 5.91 6.11 5.51 None 5.72 

Jeanne 2004 10.14 9.65 None 9.93 10.88 6.16 None 9.50 

Dennis 2005 3.06 9.19 None 8.12 6.15 9.93 4.59 8.12 

Dennis 
Keys 

2005 None None None None 12.67 None None 12.67 

Katrina 2005 14.66 8.25 None 11.49 12.50 17.97 None 16.09 

Rita 2005 6.4992 14.54 None 10.28 12.41 None None 12.41 

Wilma 2005 14.73 14.05 None 14.22 12.51 14.83 None 14.44 

RMS 
N 

All 
10.18 
1397 

14.87 
1218 

6.26 
113 

12.37 
2728 

9.75 
1099 

12.79 
949 

6.71 
108 

11.19 
2156 

 
 
 
 
 
 
 
 



FPHLM V5.0 2013 

324 
 

Comparison of model and H*Wind sustained marine exposure wind speeds at ZIP Codes 
receiving model wind speeds over the given thresholds (Table 26) indicates a positive bias.  For 
ZIP Codes where model wind speeds exceeded 56 mph, the bias is +3.3 mph; negative bias was 
apparent in Hurricanes Ivan, Katrina, and Wilma. At other wind speed thresholds, low bias is 
evident for winds > 112 mph in Hurricane Charley, and winds of 75-112 mph in Hurricanes 
Frances, Ivan, Katrina, and Wilma. For winds of 56-74 mph, low bias is noted in Hurricanes Ivan, 
and Katrina. Errors for Hurricane Andrew are relatively high, but the lack of observations for 
Hurricane Andrew makes it difficult to determine if it was a Cat 4 or Cat 5 hurricane during its 
landfall in South Florida. Hurricane Rita in the Keys also shows relatively high bias, but 
observations indicate that there were fluctuations in intensity over a short period of time during its 
passage past the Keys. Model errors for Hurricane Charley are also relatively high, likely due to 
the model producing a wind field that was too broad. When model winds are compared to 
H*Wind at ZIP Codes exceeding H*Wind and sustained wind speed thresholds of 56 mph are 
considered, the mean bias is -2.2 mph. However, bias at other wind speed thresholds is larger, 
primarily caused by large model - H*Wind differences in Hurricanes Andrew, Charley, and Rita.  
 
When swaths are evaluated at ZIP Codes, a positive wind speed bias of ~3 mph is indicated. 
However, the model can also under-predict swaths for individual cases. While bias correction is 
an accepted practice for numerical weather prediction, there is no evidence that the model has a 
consistent bias. The swath bias is probably associated with limitations in specifying the radial 
pressure profile after landfall. The tendency for the Holland pressure profile parameter to produce 
too broad an area of strong winds near the eyewall is the most likely cause of bias and is likely a 
feature found in many of the current risk models. Therefore we have decided to forgo any 
corrective measures at this point.  
 
Our validation set is unique in that the values of storm position, motion, Rmax and Pmin are 
observed, and B is determined independently from the H*Wind field. In other words, it is 
impossible to fine-tune our results. Although additional validation storms are desired, we believe 
the positive bias for locations with winds > 56 mph is a characteristic of models that use the 
Holland B pressure profile parameter, which tends to produce model fields that are too broad 
outside the radius of maximum winds. Our validation method provides an objective means of 
assessing model performance by evaluating the portion of the wind field that contains damaging 
winds. 
 
The root mean square (RMS) error (Table 27) provides a better estimate of model uncertainty. For 
ZIP Codes in which model winds were 56-74 mph, the RMS error is +/- 10 mph (~ 15%), for 75-
112 mph the error is +/- 15 mph (~16%), and for winds > 112 mph the errors is +/- 6 mph (~ 5%).  
In general, for winds > 56 mph, the RMS error is +/- 12 mph or ~ 13%. RMS errors are similar 
for ZIP Codes in which H*Wind wind speeds fell into the respective thresholds. 
 

SUMMARY OF WIND SWATH VALIDATION 

Validation of the winds from the wind model against the H*Wind analyses was prepared by 
considering winds that would be strong enough to be associated with damage. Threshold-based 
comparisons could miss places where the observed winds were greater than the model and the 
model was below the threshold. Conversely, observed winds over the same thresholds can be 
compared to the co-located model grid points but would miss places where the observed winds 
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Figure 88. Histogram of CVs for all counties combined. 

 
Table 28. 95% Confidence intervals for mean loss for selected counties (based on 56,000) year 

simulation. 

county average_loss stdev_loss LCL UCL 
Alachua $10,796,224.33 $44,346,599.09 10428923.1 11163525.56 
Brevard $159,480,725.27 $596,596,988.38 154539403.7 164422046.8 
Broward $524,384,931.96 $1,594,317,725.22 511179976.8 537589887.2 

Duval $38,979,038.13 $179,076,321.85 37495836.4 40462239.86 
Escambia $36,941,528.93 $128,578,678.81 35876574.52 38006483.34 

Gulf $1,681,229.43 $6,251,301.60 1629452.951 1733005.909 
Hamilton $180,842.97 $998,483.44 172573.0192 189112.9208 

Hillsborough $190,098,430.37 $665,740,221.20 184584429.2 195612431.5 
Jackson $1,770,435.84 $7,092,169.01 1711694.867 1829176.813 

Jefferson $320,520.44 $1,723,902.76 306242.1952 334798.6848 
Lee $231,201,914.42 $666,137,262.63 225684624.8 236719204.1 

Leon $9,925,659.33 $46,947,299.63 9536817.772 10314500.89 
Madison $314,465.82 $1,737,186.77 300077.5503 $328,854.09 

Miami-Dade $548,470,438.29 $1,655,650,173.96 534757496.4 562183380.2 
Monroe $72,896,820.09 $213,213,792.55 71130874.36 74662765.82 
Nassau $4,592,837.82 $21,939,080.97 4411127.125 4774548.515 

Okeechobee $10,044,860.52 $34,985,457.75 9755093.057 10334627.98 
Osceola $43,049,508.19 $151,982,319.89 41790712.85 44308303.53 

Palm Beach $655,165,866.76 $2,085,938,272.25 637889058.6 672442674.9 
Sarasota $127,096,816.99 $414,345,855.83 123664992.6 130528641.4 

 
 LCL: 95% Lower Confidence Limit for the Average Loss 
 UCL:  95% Upper Confidence Limit for the Average Loss 
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G Katrina 135143330.00 464971.00 858448.83 
G Wilma 767025160.00 6120435.00 9217331.98 
H Charley 844602098.00 78535467.00 51557230.62 
H Dennis 28266337.00 928111.00 2142032.00 
H Jeanne 1854530377.00 74983526.00 54296228.26 
H Katrina 6903619.00 330018.00 234998.48 
H Wilma 727865863.00 47056668.00 18797871.31 
I Charley 2506896464.00 62086256.00 49220499.00 
I Frances 71919163.00 43799401.00 6719958.00 
K Jeanne 6169965775.00 84545829.00 87459704.00 
L Charley_Mob 932092266.00 79751698.00 55233775.00 
L Jeanne_Mob 2558106618.00 81552694.00 92736739.00 
M Charley_Mob 41558803.00 4511656.00 2496591.00 
M Charley 166263166.00 8645559.00 3133884.00 
M Frances_Mob 34555100.00 4009884.00 1356303.00 
M Frances 367999344.00 11489176.00 5479394.00 
M Jeanne_Mob 78735391.00 3590284.00 3175468.00 
M Jeanne 347104726.00 4812837.00 5844041.00 
N Charley 1517072812.00 15135021.00 21770116.00 
N Frances 788753177.00 9399468.00 15495894.00 
N Jeanne 2272770727.00 9048905.00 26613493.00 
O Charley 9974317521.00 250201871.00 155825974.93 
O Frances 8000326844.00 185676998.00 154776743.96 
O Jeanne 15900477962.00 127752952.00 208018427.62 
O Katrina 482901644.00 1498112.00 4203642.78 
O Wilma 13042930295.00 156638501.00 170034281.48 
P Charley 475100767.00 2015902.00 3000264.00 
P Frances 1078479766.00 2659551.00 4683178.00 
P Jeanne_Mob 905676619.00 29144703.00 35180149.00 
P Jeanne 1436506385.00 2059383.00 5997854.00 
Q Jeanne 3434049257.00 31066792.00 50161126.00 
R Andrew 30391564010.00 2984373067.00 2046681070.00 
R Charley_Mob 427213972.00 23395988.00 15910825.00 
R Charley 51283638860.00 1037108745.00 584354386.00 
R Dennis 8560926395.00 30098559.00 55014031.00 
R Erin 3193215496.00 50519119.00 58410471.00 
R Frances_Mob 467259719.00 18467176.00 7500134.00 
R Frances 35893609287.00 614006549.00 400541942.00 
R Katrina 19486034141.00 54163254.00 102899060.88 
R Wilma 80021657140.00 1185407656.00 732908955.18 
S Jeanne 1178562197.00 3125588.00 14288468.00 
T Charley 9721434560.00 111013524.00 210096366.00 
T Frances 12560929210.00 94272660.00 364423935.00 
U Charley 2685932544.00 54207520.00 40433667.00 
U Frances 3525383315.00 121893725.00 49841303.00 
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Figure 91 provides a comparison of total actual losses vs. total modeled losses for different 
hurricanes. The comparison indicates a reasonable agreement between the actual and modeled 
losses. The correlation between actual and modeled losses is found to be 0.969, which shows a 
strong positive linear relationship between actual and modeled losses. We tested whether the 
difference in paired mean values equals zero using the paired t test (t = 1.5064, df = 64, p-value = 
0.1369) and Wilcoxon signed rank test (Z = 0.9476, p-value = 0.3434). Based on these tests, we 
failed to reject the null hypothesis of equality of paired means and concluded that there is 
insufficient evidence to suggest a difference between actual and modeled losses. We also 
observed from Table 30 that about 51% of the actual losses are more than the corresponding 
modeled losses, and 49% of the modeled losses are more than the corresponding actual losses. 
This shows that our modeling process is not biased. Following Lin (1989), the bias correction 
factor (measure of accuracy) is obtained as 0.930, and the sample concordance correlation 
coefficient is found to be 0.901, which again shows a strong agreement between actual and 
modeled losses. 
 

Due to the lack of a sufficient body of claims data for commercial losses, extensive statistical tests 
were not conducted to validate the model losses. However, a tabular comparison of the modeled 
vs. actual commercial insured loss costs in Table 30 shows a reasonable agreement (Wilcoxon 
Signed Rank Test Statistic = 23, p-value = 0.5469) between the two. 
 
 

Table 30. Comparison of Total vs. Actual Losses - Commercial Residential 

Company Event TotalExposure TotalActualLoss TotalModeledLoss
D Charley $ 2,330,314,147.00 $ 63,245,008.00 $ 41,577,368.33 
D Jeanne $ 4,866,082,786.00 $ 34,826,257.00 $ 91,253,833.37 
D Katrina $ 6,489,785,877.00 $ 11,846,697.00 $ 29,613,473.16 
D Wilma $ 20,490,736,703.00 $318,671,056.00 $ 192,220,824.24 
R Frances $ 861,896,543.00 $  42,238,244.00 $ 10,437,972.70 
R Jeanne $1,021,543,325.00 $ 8,446,718.00 $11,967,504.05 
R Katrina $  224,056,700.00 $ 2,178,110.00 $  8,852,463.23 
R Wilma $  2,423,207,666.00 $  62,492,371.00 $ 14,252,608.97 
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Form S-1:  Probability and Frequency of Florida Landfalling Hurricanes 
per Year 
 
Complete the table below showing the probability and modeled frequency of landfalling Florida 
hurricanes per year.  Modeled probability shall be rounded to four decimal places.  The historical 
probabilities and frequencies below have been derived from the Base Hurricane Storm Set as 
defined in Standard M-1. 
 
If the data are partitioned or modified, provide the historical probabilities and frequencies for the 
applicable partition (and its complement) or modification as well as the modeled probabilities 
and frequencies in additional copies of Form S-1. 
 

Model Results
Probability and Frequency of Florida Landfalling Hurricanes per Year

     

Number 
Of 

Hurricanes 
Per Year 

 
Historical 

Probabilities 

 
Modeled 

Probabilities 

 
Historical 

Frequencies 

 
Modeled 

Frequencies 

0 0.6071 0.6201 68 69 

1 0.2500 0.2384 28 27 

2 0.1161 0.0969 13 11 

3 0.0268 0.0350 3 4 

4 0.0000 0.0087 0 1 

5 0.0000 0.0008 0 0 

6 0.0000 0.0000 0 0 

7 0.0000 0.0000 0 0 

8 0.0000 0.0000 0 0 

9 0.0000 0.0000 0 0 

10 or more 0.0000 0.0000 0 0 
 
 
Note: Historical and modeled frequencies are the number of occurrences in a 112 year 
period, rounded to nearest integer. 
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Form S-2:  Examples of Loss Exceedance Estimates 
 
Provide projections of the aggregate personal and commercial insured losses for various 
probability levels using the national risk data set specified in Form A-1 and using the 2007 
Florida Hurricane Catastrophe Fund aggregate personal and commercial residential exposure  
data set provided in the file named “hlpm2007c.exe”.  Provide the total average annual loss for 
the loss exceedance distribution.  If the modeling methodology does not allow the model to 
produce a viable answer, please state so and why.   
 
Part A 
 

Return Period 
(Years) 

 Probability of 
Exceedance 

 Estimated Loss 
Notional Risk Data 

Set 

Estimated Personal and 
Commercial Residential 

Loss FHCF Data Set 

Top Event NA $73,924,486 $174,210,398,506 

10000 0.01% $63,977,042 $146,776,764,287 

5000 0.02% $58,639,417 $131,547,949,709 

2000 0.05% $49,717,591 $108,504,279,774 

1000 0.10% $43,086,024 $95,864,252,569 

500 0.20% $37,650,317 $83,070,567,278 

250 0.40% $32,735,876 $72,196,600,421 

100 1.00% $26,715,797 $58,746,548,004 

50 2.00% $22,045,379 $47,451,128,470 

20 5.00% $14,989,960 $31,707,675,501 

10 10.00% $9,385,345 $19,625,750,590 

5 20.00% $3,404,655 $7,158,290,622 

 
 
Part B 
 

Mean (Total Average Annual Loss) $2,566,767 $5,407,994,894 

Median $0 $1,928 

Standard Deviation $5,722,545 $12,370,046,057 

Interquartile Range $1,760,899 $3,384,500,966 

Sample Size 56000 56000 
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Form S-3:  Distributions of Stochastic Hurricane Parameters 
 
Provide the probability distribution functional form used for each stochastic hurricane parameter 
in the model.  Provide a summary of the rationale for each functional form selected for each 
general classification. 

 
Stochastic 
Hurricane 
Parameter 

(Function or 
Variable) 

Functional 
Form 

of 
Distribution 

Data Source Year 
Range 
Used 

Justification 
for Functional Form 

Holland B 
Error term 

Normal Willoughby and Rahn 
(2004) 

1977-2000 The Gaussian 
Distribution provided 
a good fit for the error 

term. See Standard   
S-1, Disclosure 1. 

Rmax Gamma Ho et al. (1987) , 
supplemented by the 

extended best track data 
of DeMaria (Penington 
2000), Air Force Recon 
, NOAA HRD research 
flight data, and NOAA-
HRD H*Wind analyses 

(Powell et al. 1996, 
1998). 

1901-2010 Rmax is skewed, 
nonnegative  and does 
not have a long tail. 

So the gamma 
distribution was tried 

and found to be a 
good fit. We limit the 
range of Rmax to the 

interval (4, 60). 
See Standard S-1, 

Disclosure 1. 
Pressure 

decay Term 
Normal Vickery (2005) 1979-1996 Vickery (2005) 

Storm initial 
location 

perturbation 

Uniform N/A N/A Plausible variations in 
initial storm locations 

are assumed to be 
uniform 

Storm initial 
motion 

perturbation 

Uniform N/A N/A Plausible variations in 
initial storm motion 
are assumed to be 

uniform 
Storm 

change in 
motion and 

intensity 
distributions 

Empirical HURDAT 1900-2011 Sampling from 
historical data 

See Standard G-1, 
Disclosure 2 for 

details 
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Form S-4:  Validation Comparisons 
 
A. Provide five validation comparisons of actual personal residential exposures and loss to 

modeled exposures and loss.  These comparisons must be provided by line of insurance, 
construction type, policy coverage, county or other level of similar detail in addition to total 
losses.  Include loss as a percent of total exposure.  Total exposure represents the total 
amount of insured values (all coverages combined) in the area affected by the hurricane.  
This would include exposures for policies that did not have a loss.  If this is not available, use 
exposures for only those policies that had a loss.  Specify which was used.  Also, specify the 
name of the hurricane event compared. 

 
B. Provide a validation comparison of actual commercial residential exposures and loss to 

modeled exposures and loss.  Use and provide a definition of the model’s relevant 
commercial residential classifications. 

 
C. Provide scatter plot(s) of modeled vs. historical losses for each of the required validation 

comparisons.  (Plot the historical losses on the x-axis and the modeled losses on the y-axis.) 
 
Rather than using directly a specific published hurricane wind field, the winds underlying the 
modeled loss cost calculations must be produced by the model being evaluated and should be the 
same hurricane parameters as used in completing Form A-2. 
 
Personal Residential 
 

Comparison #1: Hurricane Charley and Company O by Coverage 
 

Company Actual Modeled Difference 
Coverage Loss/Exposure Loss/Exposure 
Building 0.00764 0.00897 -0.00133
Contents 0.00007 0.00245 -0.00238

Appurtenants 0.00107 0.01012 -0.00905
ALE 0.00025 0.00167 -0.00142
Total 0.00424 0.00632 -0.00207

 
Comparison #2: Different Companies by Different Hurricanes 

Company Actual Modeled Difference
Company Event Loss/Exposure Loss/Exposure 

K Jeanne 0.01370 0.01418 -0.00047
R Erin 0.01582 0.01829 -0.00247
B Charley 0.01544 0.01687 -0.00143
P Frances 0.00247 0.00434 -0.00188
P Charley 0.00424 0.00632 -0.00207
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       Comparison #3: Company P by Hurricane Frances, Charley, Jeanne 
  Company Actual Modeled Difference
Company Event Loss/Exposure Loss/Exposure  
P Frances 0.00247 0.00434 -0.00188
P Charley 0.00424 0.00632 -0.00207
P Jeanne 0.00143 0.00418 -0.00274

 
 
Comparison #4: Construction Type for Hurricane Charley 

Construction Company 
Company Actual Modeled Difference
Loss/Exposure Loss/Exposure 

Frame B 0.01363 0.01694 -0.00331
Masonry B 0.01584 0.01685 -0.00101
Manufactured R 0.05476 0.03724 0.01752
Other A 0.01803 0.01448 0.00355

 
 

Comparison #5: County wise for Company A and Hurricane Frances 
Company Actual Modeled Difference 

Lee 0.000019 0.000025 -0.000007
Sarasota 0.000122 0.000076 0.000046
Collier 0.000031 0.000081 -0.000051
Madison 0.000865 0.000931 -0.000066
Manatee 0.000257 0.000333 -0.000076
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Figure 92. Scatter plot for comparison # 1. 
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Figure 93. Scatter plot for comparison # 2. 
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Figure 94. Scatter plot for comparison # 3. 
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Figure 95. Scatter plot for comparison # 4. 
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Figure 96. Scatter plot for comparison # 5. 

 
 
 
Commercial Residential: 
 
Comparison # 1: Companies D and M by Hurricane Charley, Katrina, Wilma, and Jeanne 
    Company Actual Modeled Difference 
Company Event Loss/Exposure Loss/Exposure   

D Charley 0.02714 0.01784 0.00930
D Katrina 0.00183 0.00456 -0.00274
D Wilma 0.01555 0.00938 0.00617
R Jeanne 0.00827 0.01172 -0.00345
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Figure 97. Scatter plot for comparison # 1. 
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Form S-5:  Average Annual Zero Deductible Statewide Loss Costs – 
Historical versus Modeled 
 
A. Provide the average annual zero deductible statewide personal and commercial residential 

loss costs produced using the list of hurricanes in the Base Hurricane Storm Set as defined in 
Standard M-1 based on the 2007 Florida Hurricane Catastrophe Fund’s aggregate personal 
and commercial residential exposure data found in the file named “hlpm2007c.exe.”  

 
Average Annual Zero Deductible Statewide Personal Residential and Commercial Loss 
Costs (in millions of dollars) 

 

Time Period  Historical Hurricanes Produced by Model 

Current Submission $5,277.44 $5,407.99 

Previously Accepted 
Submission  $5,938.63  $5,896.72  

Percentage Change Current 
Submission/Previously 
Accepted Submission 

-11.13% -8.29% 

Second Previously 
Accepted Submission N/A  N/A 

Percentage Change Current 
Submission/Second 
Previously Accepted 
Submission N/A N/A 

 
B. Provide a comparison with the statewide personal and commercial residential loss costs 

produced by the model on an average industry basis. 
 
The loss cost produced by the model on an average industry basis is 5.4 billion dollars and the 
corresponding historical average loss is 5.3 billion dollars. 
 
C. Provide the 95% confidence interval on the differences between the mean of the historical 

and modeled personal and commercial residential loss. 
 
The 95% confidence interval on the difference between the mean of the historical and the mean of 
the modeled losses is between -2.12 and 1.86 billion dollars. Since the interval contains 0, we are 
95% confident that there is no significant difference between the historical and the modeled 
losses.  
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D. If the data are partitioned or modified, provide the average annual zero deductible statewide 
personal residential and commercial loss costs for the applicable partition (and its 
complement) or modification as well as the modeled average annual zero deductible 
statewide personal residential loss costs in additional copies of Form S-5. 

 
Not applicable. 
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Form S-6:  Hypothetical Events for Sensitivity and Uncertainty Analysis 
 
We have provided the output in ASCII files based on running a series of hurricanes as provided in 
the Excel file “FormS5Input09.xls.” The output files consist of wind speeds (in miles per hour 
for one minute sustained 10 meter winds) at hourly intervals over a 21×40 grid for the 500 
combinations of initial conditions specified in the Excel file for the following model inputs: 
 

 CP   = central pressure (in millibars)  
 Rmax   = radius of maximum winds (in statute miles)  
 VT   = translational velocity (forward speed in miles per hour)   
 Holland B  = pressure profile parameter for other input used by the modeler  

            (0 p 1) 
 FFP   = far field pressure (in millibars) 

 
The value of CP, Rmax, VT, FFP and Quantile are used as direct inputs. Quantiles from 0 to 1 
have been provided in the Excel input file. For the FPHLM (V4.1) model, we used the first 
quantile input for the Holland B parameter.  
 
On a CD, we have provided an ASCII file and a PDF file named FPHLM09Expected Loss Costs. 
This file gives aggregate and expected loss costs for each input vector for each category of 
hurricane and contains 3x100=300 rows. 
 
We have also provided, on a CD, the results in an ASCII file and a PDF file named 
FPHLM09Loss Cost Contour, which contains 3 x 682 = 2,046 rows. This file gives the mean loss 
cost at each of the 682 land based vertices over all 100 input vectors for each hurricane category. 
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Distribution of Loss Costs 
 

Figure 98 provides the comparison of CDFs of the Expected Loss Costs for all Hurricane 
Categories. 
 

 
Figure 98. Comparison of CDFs of Loss Costs for all Hurricane Categories. 

Figure 99 – Figure 101 show contours of the mean loss cost for Category 1, 3 and 5 hurricane 
respectively for each land based grid point. The mean percentage loss costs are found to be about 
between 1.14 %-8.3% for Category 1, between 3.64%-24.6% for Category 3 and between 2.57%-
41.84% for Category 5 hurricanes. The largest losses occur shortly after landfall to the right of the 
hurricane path.  
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Figure 99. Contour Plot of Loss Cost for a Category 1 Hurricane. 
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Figure 100. Contour Plot of Loss Cost for a Category 3 Hurricane. 
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Figure 101. Contour Plot of Loss Cost for a Category 5 Hurricane. 

 
Sensitivity and Uncertainty Analysis for Expected Loss Costs 

 
Sensitivity analysis for the expected loss costs was conducted through the use of the standardized 
regression coefficients of the expected loss cost as a function of the input variables for Category, 
1, 3 and 5 hurricanes. We used the methods described by Iman et al. (2000a, 2000b). The values 
of standardized regression coefficients are summarized in the table below. 
 

Category CP Rmax VT Holland B FFP 
1 -0.4118 0.1039 0.1648 0.6477 0.5905 
3 -0.2599 0.4033 0.1137 0.6552 0.4236 
5 -0.1349 0.6939 -0.0022 0.5862 0.1801 

 
 
 
Figure 102 gives the graph of the standardized regression coefficients for all input variables for 
Category 1, 3 and 5 hurricanes. From the graph, we observed that the sensitivity of expected loss 
cost depends on the category of the hurricanes. For a Category 1 hurricane, expected loss cost is 
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most sensitive to Holland B parameter followed by FFP, CP and VT. For a Category 3 hurricane, 
expected loss cost is most sensitive to Holland B followed by FFP, Rmax and CP and finally for a 
Category 5 hurricane, expected loss cost is most sensitive to Rmax, followed by Holland B, CP 
and FFP.  The expected loss cost is least sensitive to Rmax for Category 1 while the expected loss 
cost is least sensitive to VT for Categories 3 and 5.  
 

 
Figure 102. SRCs for expected loss cost for all input variables for all hurricane categories. 

 
Uncertainty analysis for the expected loss costs was conducted through the use of the expected 
percentage reduction (EPR) in the variance of the expected loss cost as a function of the input 
variables for Category, 1, 3 and 5 hurricanes. We used the methods described by Iman et al. 
(2000a, 2000b). The values of EPR’s are summarized in the table below. 
 

Category CP Rmax VT Holland B FFP 
1 20.8398% 3.9463% 2.0921% 46.2717% 36.7245% 
3 6.0155% 14.8201% 1.1625% 51.3594% 10.4668% 
5 4.6087% 48.7428% 1.8529% 42.1176% 4.6455% 
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Figure 103 gives the expected percentage reductions in the variance of expected loss cost for 
Category 1, 3 and 5 Hurricanes for all input variables.  As with the sensitivity analysis, the 
category of the hurricane determines which variable contributes most to the uncertainty of the 
expected loss cost. For a Category 1 hurricane, the major contributor to the uncertainty in loss 
cost is the Holland B parameter, followed by FFP, then CP. For a Category 3 hurricane, the major 
contributor to the uncertainty in loss cost is Holland B, followed by Rmax, then FFP. For a 
Category 5 hurricane, the major contributor to the uncertainty of expected loss cost is Rmax, 
followed by Holland B, then FFP, and finally CP. The variable VT has negligible effect on the 
uncertainty in expected loss costs. 
 

 
Figure 103. EPRs for Expected Loss Cost for all Input Variables for all Hurricane Categories. 
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COMPUTER STANDARDS 
 
C-1 Documentation 
 
A. Model functionality and technical descriptions shall be documented formally in 

an archival format separate from the use of letters, slides, and unformatted text 
files.  

 
The Florida Public Hurricane Loss model formally documents the model functionality and 
technical descriptions in the primary document binder, an archival format separate from the use of 
letters, slides, and unformatted text files. The primary document binder uses standard software 
practices to formally describe the model’s requirements and complete software design and 
implementation specifications. All documentation, formal and informal, related to the model is 
maintained in a central location that is easily accessible.  
 
B. The modeling organization shall maintain a primary document binder, 

containing or referencing a complete set of documentation specifying the 
model structure, detailed software description, and functionality.  Development 
of the documentation shall be indicative of accepted software engineering 
practices. 

 
The Florida Public Hurricane Loss Model (FPHLM) maintains a primary document binder, in 
both electronic and physical formats, to satisfy the aforementioned requirements. In addition, the 
FPHLM maintains a user manual, designed for the end user, which provides a high-level 
introduction and a step-by-step guide to the whole system. All the documents are easily available 
for inspection and electronic copies are also available online. Accepted software engineering 
practices are used to render all the documents more readable, self-contained, consistent, and easy 
to understand. Every component of the system is documented with standard use case, class, data 
flow, sequence diagrams, etc. The diagrams describe in detail the structure, logic flow, 
information exchange among submodules, etc. of each component and increase the visibility of 
the system. The diagrams describing the component functionality and structure also make each 
component of the system reusable and easily maintainable. 
 
C. All computer software (i.e., user interface, scientific, engineering, actuarial, 

data preparation, and validation) relevant to the submission shall be 
consistently documented and dated. 

 
The primary document binder contains all of the required documents arranged in subfolders 
linked to one another on the basis of their mutual relationships. Thus, the entire document can be 
viewed as a hierarchical referencing scheme in which each module is linked to its submodule, 
which ultimately refers to the corresponding codes. 
 
D. The modeling organization shall maintain (1) a table of all changes in the model 

from the previously accepted submission to the initial submission this year 
and (2) a table of all substantive changes since this year’s initial submission.  
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These tables are maintained and documented and will be available for review. 
 
E. Documentation shall be created separately from the source code. 
 
Databases and formats of all the input/output data files are comprehensively documented. All 
source code is properly documented in terms of both in-line detailed comments and external 
higher-level documentation, and they are maintained under version control systems. Source-code 
documentation has been created separately from the source code.  
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C-2 Requirements 
 
The modeling organization shall maintain a complete set of requirements for each 
software component as well as for each database or data file accessed by a 
component.  Requirements shall be updated whenever changes are made to the 
model. 
 
The FPHLM is divided into several major modules, each of them providing one or more inputs to 
other modules. Requirements of each of the modules, including input/output formats, are 
precisely documented. Apart from maintaining a detailed documentation of each module of the 
system using standard software practices, several other documents are maintained as part of a 
large-scale project management requirement, including a quality assurance document, a system 
hardware and software specification document, a training document, a model maintenance 
document, a testing document, a user manual, etc. Moreover, detailed documentation has been 
developed for the database consisting of the schema and information about each table. 
Additionally, information about the format for each data file (in the form of an Excel or text file) 
accessed by different programs is documented. Whenever changes are made to a model, the 
corresponding requirements documentation is updated to reflect such changes.  
 
Disclosure 
 
1. Provide a description of the documentation for interface, human factors, functionality, 

documentation, data, human and material resources, security, and quality assurance. 
 
The user interface, functionality requirements, and material resources of each of the modules are 
described in the relevant module documentation. Database schemata and table formats are 
separately documented for the whole system and attached to the primary document binder. A 
separate software testing and quality assurance document describes the system quality, 
performance, and stability concerns. Additionally, a user manual and a human resource 
management document are maintained. Additionally, security, software and hardware 
specifications for the system as well as training plans are documented.  
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C-3 Model Architecture and Component Design 
 
The modeling organization shall maintain and document (1) detailed control and 
data flow diagrams and interface specifications for each software component, and 
(2) schema definitions for each database and data file. Documentation shall be to 
the level of components that make significant contributions to the model output. 
 
Interface specifications for each of the modules are included in the module documentation. In 
addition, the user manual provides further information about the user interface specification. 
Control and data flow diagrams are presented at various levels of the model documentation. High-
level flow diagrams are used to illustrate the flow of the whole system and the interactions among 
modules. More technical and detailed diagrams are used in module-level descriptions.  
 
The database schema are documented and attached as part of the document binder. A detailed 
schema representation of the active database is documented with additional information such as 
database maintenance, tuning, data loading methodologies, etc. to provide a complete picture of 
the database maintained for the project.  
 
These documents will be made available to the professional team during the site visit. 
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C-4 Implementation 
  
A. The modeling organization shall maintain a complete procedure of coding 

guidelines consistent with accepted software engineering practices. 
 
The FPHLM has developed and followed a set of coding guidelines that is consistent with 
accepted software practices. These documents include guidelines for version control, code 
revision history maintenance, etc. All the developers involved in the system development adhere 
to the instructions in these documents.  
 
B. The modeling organization shall maintain a complete procedure used in 

creating, deriving, or procuring and verifying databases or data files accessed 
by components. 

 
The FPHLM uses an Oracle database to store the related data necessary for the model. The 
database documentation includes the procedures for creating and deriving the database. Data files 
are generated by different modules and used as interfaces between modules. Several data 
verification techniques are undertaken to ensure the correctness. Details about these are included 
in the module documentation. 
 
C. All components shall be traceable, through explicit component identification in 

the flow diagrams, down to the code level. 
 
Traceability, from requirements to the code level and vice versa, is maintained throughout the 
system documentation.  
 
D. The modeling organization shall maintain a table of all software components 

affecting loss costs, with the following table columns: (1) Component name, (2) 
Number of lines of code, minus blank and comment lines; and (3) Number of 
explanatory comment lines. 

 
The FPHLM primary document binder includes a table that gives the above-requested 
information. The table is available for review by the professional team. 
 
E. Each component shall be sufficiently and consistently commented so that a 

software engineer unfamiliar with the code shall be able to comprehend the 
component logic at a reasonable level of abstraction. 

 
All the software codes are properly provided with code-level comments, and a consistent format 
is maintained throughout the software modules. These code-level comments include a summary 
of important changes, names of developers involved in each modification, function headers, and 
in-line comments to explain potentially ambiguous software code.  
 
F. The modeling organization shall maintain the following documentation for all 

components or data modified by items identified in Standard G-1, Disclosure 5: 
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1. A list of all equations and formulas used in documentation of the model 
with definitions of all terms and variables. 

 
2. A cross-referenced list of implementation source code terms and 

variable names to items within F.1. 
 
Tables that map the equations and formulas used in documentation of the model implementation 
source code terms and variable names were added as glossaries to the model’s documentation, 
thus combining F.1 and F.2 into the same table. These tables enhance the model’s documentation 
and include the equations and formulas for each module (not just the modified ones from the prior 
year’s submission).  
 
Disclosure 
 
1. Specify the hardware, operating system, other software, and all computer languages    

required to use the model. 
 
The system is mainly a web-based application that is hosted over an Oracle 9i web application 
server. The backend server environment is Linux and the server side scripts are written in Java 
Server Pages (JSP) and Java beans. Many backend calculations are coded in C++ using the IMSL 
library and called through Java Native Interface (JNI). The system uses an Oracle database 
running on a Sun workstation. Server side software requirements are IMSL library CNL 5.0, 
OC4J 9.0.2.0.0, Oracle 9iAS 9.0.2.0.0, JNI 1.3.1, and JDK 1.3.1. 
 
The end-user workstation requirements are minimal. The recommended web browsers are Internet 
Explorer 8.0 running on Windows XP or Internet Explorer 9.0 running on Windows 7. However, 
other modern web browsers such as Mozilla Firefox running on either Windows or Linux should 
also deliver optimal user experience. Typically, the manufacturer’s minimal set of features for a 
given web browser and operating system combination is sufficient for an optimal operation of the 
application. 
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C-5 Verification 
 
A. General 
 
For each component, the modeling organization shall maintain procedures for 
verification, such as code inspections, reviews, calculation crosschecks, and 
walkthroughs, sufficient to demonstrate code correctness. Verification procedures 
shall include tests performed by modeling organization personnel other than the 
original component developers.  
 
FPHLM software verification is done in three stages.  
 

1. Code inspection and verification by the code developer. 
2. Inspection of the input and validation of the output by the system modeler. 
3. Review and extensive testing of the code by modeler personnel who are not part of the 
original component development. 

 
The first level of verification includes code-level debugging, walking through the code to ensure a 
proper flow, inspection of internal variables through intermediate output printing and error 
logging, use of exception handling mechanisms, calculation crosschecks, and verification of the 
output against sample calculations provided by the system modeler. 
 
In the second level of the verification, the modeler is provided with sample inputs and 
corresponding outputs. The modeler then conducts black-box testing to verify the results against 
his or her model. Finally, each component is rigorously tested by modeler personnel not 
responsible for original component development. 
 
B. Component Testing 

 
1. The modeling organization shall use testing software to assist in 

documenting and analyzing all components. 
 
Component testing (C-5.B) and data testing (C-5.C) are done in the third level of verification. The 
system is rigorously checked for the correctness, precision, robustness, and stability of the whole 
system. Calculations are performed outside the system and compared against the system- 
generated results to ensure the system correctness. Extreme and unexpected inputs are given to 
the system to check the robustness. Wide series of test cases are developed to check the stability 
and the consistency of the system. 
 

2. Unit tests shall be performed and documented for each component. 

Unit testing is done at the first and third levels of verification. The developer tests all the units as 
the unit is developed and modified. Then all the units are tested again by the external testing team. 
Both “black-box” and “white-box” tests are performed and documented in a separate testing 
document.  
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3. Regression tests shall be performed and documented on incremental 
builds. 

 
Regression testing is performed for each module. In this kind of testing methodology, the 
modules that have undergone some changes and revisions are retested to ensure that the changes 
have not affected the entire system in any undesired manner. 
 

4. Aggregation tests shall be performed and documented to ensure the 
correctness of all model components. Sufficient testing shall be performed 
to ensure that all components have been executed at least once. 

 
Aggregation testing is performed at all three levels of verification. Aggregation testing is 
performed by running each major module as a complete package. It is ensured that all 
components have been executed at least once during the testing procedure. All the test cases 
executed are described in the software testing and verification documentation. 
 
C. Data Testing 

 
1. The modeling organization shall use testing software to assist in 

documenting and analyzing all databases and data files accessed by 
components. 

 
The FPHLM uses an Oracle database to store the required data. Data integrity and consistency are 
maintained by the database itself. Moreover, different queries are issued and PL/SQL is 
implemented to check the database. Oracle 9i has a very robust loader, which is used to load the 
data into the database. The loader maintains a log that depicts if the loading procedure has taken 
place properly and completely without any discrepancy. Data files are manually tested using 
commercial data manipulation software such as Excel and Access.  
 

2. The modeling organization shall perform and document integrity, 
consistency, and correctness checks on all databases and data files 
accessed by the components. 

 
All the tests are well documented in a separate testing document. 
 
Disclosures 
 
1. State whether two executions of the model with no changes in input data, parameters, code, 

and seeds of random number generators produce the same loss costs and probable 
maximum loss levels.  

 
The model produces the same loss costs and probable maximum loss levels if it is executed more 
than once with no changes in input data, parameters, code, and seeds of random number 
generators. 
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2. Provide an overview of the component testing procedures. 
 
FPHLM software testing and verification is done in three stages.  
 
[A] Code inspection and the verification by the code developer  
 
The code developer performs a sufficient amount of testing on the code and does not deliver the 
code until he or she is convinced of the proper functionality and robustness of the code.  
 
The first level of verification includes code-level debugging, walking through the code to ensure 
proper flow, inspection of internal variables through intermediate output printing and error 
logging, use of exception handling mechanisms, calculation crosschecks, and verification of the 
output against sample calculations provided by the system modeler. 
 
[B] Verification of results by the person who developed the system model 
 
Once the first level of testing is done, the developer sends the sample inputs and the generated 
results back to the modeler. Then the system modeler double-checks the results against his or her 
model. The code is not used in the production environment unless approved by the modeler. 
 
[C] Review and extensive testing of the code by modeler personnel other than the original 
component developers. 
 
The system is rigorously checked by modeler personnel (testers) other than the original 
component developers for the correctness, precision, robustness, and stability of the whole 
system. Calculations are performed outside the system and compared against the system 
generated results to ensure the system correctness. Extreme and unexpected inputs are given to 
the system to check the robustness. Wide series of test cases are developed to check the stability 
and the consistency of the system.  
 
Unit testing, regression testing, and aggregation testing (both white-box and black-box) are 
performed and documented. 
 
Any flaw in the code is reported to the developer, and the bug-corrected code is again sent to the 
tester. The tester then performs unit testing again on the modified units. Additionally, regression 
testing is performed to determine if the modification affects any other parts of the code.  
 
Different testing tools and software packages are used to test different components of the system. 
The detailed list of the various testing tools and/or techniques used for different components of 
the system is provided in the main document and will be available for audit.  
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C-6 Model Maintenance and Revision 
 
A. The modeling organization shall maintain a clearly written policy for model 

revision, including verification and validation of revised components, 
databases, and data files.   

 
The FPHLM is periodically enhanced to reflect new knowledge acquired about hurricanes and 
Florida ZIP Code information. A clearly written policy for model revision is maintained in the 
primary document binder. 
 
B. A revision to any portion of the model that results in a change in any Florida 

residential hurricane loss cost shall result in a new model version number. 
 
Whenever a revision results in a change in any Florida residential hurricane loss cost, a new 
model version number will be assigned to the revision. Verification and validation of the revised 
units are repeated according to the above-mentioned “software verification procedures” 
document.  
 
C. The modeling organization shall use tracking software to identify all errors, as 

well as modifications to code, data, and documentation. 
 
The FPHLM uses Subversion for version control. Subversion is a revision control system widely 
used in recent years by important projects and has been termed the successor of CVS (Concurrent 
Versions System). We can record the history of source files and documents by using Subversion. 
 
D. The modeling organization shall maintain a list of all model versions since the 

initial submission for this year. Each model description shall have unique 
version identification, and a list of additions, deletions, and changes that define 
that version. 

 
A list of all model versions since the initial submission will be maintained.  Each model revision 
will have a unique model version number (i.e., unique version identification) and a list of 
additions, deletions, and changes that define that version. The unique model version will consist 
of the scheme “V[major].[minor].” The terms “[major]” and “[minor]” are positive numeric 
numbers that correspond to substantial and minor changes in the model, respectively. A minor 
change in the model would cause the minor number to be incremented by one, and similarly, a 
major change in the model would cause the major number to be incremented by one with the 
minor reset to zero. The rules that prompt changes in the major and minor numbers are described 
in Disclosure 2. 
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Disclosures 
 
1. Identify procedures used to maintain code, data, and documentation. 
 
The FPHLM’s software development team employs source revision and control software for all 
software development. In particular, the FPHLM employs Subversion, an accepted and effective 
system for managing simultaneous development of files. Recently, it has been used in large 
programming projects both in the open-source community and in the corporate world to track 
modifications to source code and documentation files. Subversion maintains a record of the 
changes to each file and allows the user to revert to a previous version, merge versions, and track 
changes. This software is able to record the information for each file, the date of each change, the 
author of each change, the file version, and the comparison of the file before and after the 
changes. The detailed information will be made available to the professional team during its site 
visit. 
 
2.  Describe the rules underlying the model and code revision numbering systems. 
 
The model numbering system consists of the scheme “V[major].[minor].” The terms "[major]" 
and "[minor]" are positive numeric numbers that correspond to major and minor changes in the 
model, respectively; a minor change causes the minor number to be incremented by one, and 
similarly, a major change causes the major number to be incremented by one with the minor 
number reset to zero. The rules that prompt major or minor changes in the model are the 
following: 

 
Rules that trigger a change in the major number: 

 
- Updates in any of the main modules of the FPHLM: any change resulting in the partial or 
total modification of the algorithm/model of the Storm Generation, Wind Field, Damage 
Estimation, and/or Insurance Loss models. 

 
Rules that trigger a change in the minor number: 
 

- Slight changes to the Storm Generation, Wind Field, and/or Damage Estimation 
modules: small updates such as a change in the Holland B parameter or any change to 
correct deficiencies that do not result in a new algorithm for the component. 
 
- Updates to correct errors in the computer code: modifications in the code to correct 
deficiencies or errors such as a code bug in the computer program.  
 
- Changes in the probability distribution functions using updated or corrected historical 
data, such as the updates of the HURDAT database: each year the model updates its 
HURDAT database with the latest HURDAT data released by the National Hurricane 
Center, which is used as the input in the Storm Generation Model. 
 
- Updates of the ZIP Code list: every two years the ZIP Codes used in the model must be 
updated according to information originating from the United States Postal Service. 
 



FPHLM V5.0 2013 

369 
 

- Updates in the validation of the vulnerability matrices: the incorporation of new data, 
such as updated winds and insurance data, may trigger a tune-up of the vulnerability 
matrices used in the Insurance Loss Model. 
 

If any change results in a change in loss costs estimates, there will be at least a change in the 
minor revision number. 
 
Consequently, for the submission of November 1, 2012, the Florida Public Hurricane Loss Model 
changed its version number from 4.1 to 5.0 because of the incorporation of the most recent 
HURDAT database, the updated ZIP Code list, and the changes in the meteorological and 
vulnerability models. For a detailed description of the aforementioned changes, please refer to 
Standard G-1, Disclosure 5. 
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C-7 Security 
 
The modeling organization shall have implemented and fully documented security 
procedures for: (1) secure access to individual computers where the software 
components or data can be created or modified, (2) secure operation of the model 
by clients, if relevant, to ensure that the correct software operation cannot be 
compromised, (3) anti-virus software installation for all machines where all 
components and data are being accessed, and (4) secure access to 
documentation, software, and data in the event of a catastrophe.  
 
The FPHLM maintains a set of security procedures to protect data and documents from deliberate 
and inadvertent changes. These procedures include both physical and electronic measures. A set 
of policies identifies different security issues and addresses each of them. All the security 
measures are properly documented and attached to the primary document binder.  
 
Disclosure 
 
1. Describe methods used to ensure the security and integrity of the code, data, and 

documentation. 
 
Electronic measures include the use of different authorization levels, special network security 
enforcements, and regular backups. Each developer is given a separate username and password 
and assigned a level of authorization so that even a developer cannot change another developer’s 
code. The users of the system are given usernames and passwords so that unauthorized users 
cannot use the system. External users are not allowed direct access to any of the data sources of 
the system. The network is extensively monitored for any unauthorized actions using standard 
industry practices. Since the system runs on a Linux sever environment, minimal virus attacks are 
expected.  
 
Any sensitive or confidential data (insurance data, for example) are kept on an unshared disk on a 
system that has user access control and requires a login. Screen locks are enforced whenever the 
machine is left unattended. In addition, for system security and reliability purposes, we also 
deploy a development environment besides the production environment. Modifications to the 
code and data are done in the development environment and tested by in-house developers. The 
final production code and data can only be checked into the production environment by the 
authorized personnel. The models resulting from the FPHLM project can only be used by the 
authorized users. Authorized user accounts are created by the project manager. Regular backups 
of the server are taken and stored in two ways: physically and electronically. Backups are 
performed daily and are kept for six weeks. Nightly backups of all UNIX data disks and selected 
Windows data disks (at user requests) are performed over the network onto LT02 and LT03 tapes. 
The tape drives have built-in diagnostics and verification to ensure that the data is written 
correctly to the tapes. This ensures that if the tape is written successfully, it will be readable, 
provided no physical damage occurred to the tape. A copy of each backup is placed in a secure 
and hurricane-protected building. Additionally, the application server and the database server are 
physically secured in a secure server room with alarm systems. In case of disasters, we have 
implemented a set of preparation procedures and recovery plans as outlined in “FIU SCIS 
Hurricane Preparation Procedures.”  
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Assessment of the meteorological portion of the State of Florida Public 
Hurricane Model 

 
February 15, 2007 

Gary M. Barnes 
Professor, Department of Meteorology 

School of Ocean and Earth Science and Technology 
University of Hawaii at Manoa 

 

Introduction 

      My review of the State of Florida Public Hurricane Model is based on a three day visit to 
Florida International University in December, and an examination of the submission draft 
provided to me in February.  I have had full access to the meteorological portion of the model, 
access to the draft for the Florida commission, and access to prior submittals to the commission 
from several other groups in order to establish a sense of what is desired by the commission.  I 
am pleased to report that the issues that I have raised have received their attention and I believe 
that the model meets all the standards set forth by the commission. Ultimately this model, when 
linked to engineering and actuarial components, will provide objective guidance for the 
estimation of wind losses from hurricanes for the state of Florida. It does not address losses from 
other aspects of a tropical cyclone such as storm surge, or fresh water flooding. I now offer 
specific comments on each of the six meteorological standards established by the commission to 
ascertain this model’s suitability.  
 
M-1 Official Hurricane Set 

     The consortium of scientists working on the Public model have adopted HURDAT (1900- 
2006) to determine landfall frequency and intensity at landfall.  The NWS report by Ho et al. 
(1987), DeMaria’s extension of the best track, H*Wind analyses (Powell & Houston, 1996, 
1998; Powell et al. 1996, 1998) and NOAA Hurricane Research Division aircraft data are used to 
estimate the radius of maximum winds (RMW) at landfall. The strength of HURDAT is that it is 
the most complete and accessible historical record for hurricanes making landfall or passing 
closely by Florida.  HURDAT weaknesses include the abbreviated record and questionable 
intensity estimates for those hurricanes early in the record, especially those that remain offshore. 
Evidence for the shortness of record is the impact of the last few hurricane seasons on landfall 
return frequency. The meteorological team has scrutinized the base set developed by the 
commission and made a number of adjustments to the dataset based on refereed literature and the 
HURDAT record. I have looked at several of these adjustments in detail and find the corrections 
to be an improvement over the initial base set.  
 
M-2 Hurricane Characteristics 

     The model has two main components. The track portion of the model produces a storm with 
either an initial location or genesis point and an intensity that is derived from an empirical 
distribution derived from HURDAT (2006). Storm motion and intensity is then initialized by 
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using a Monte Carlo approach, drawing from probability density functions (PDFs) based on the 
historical dataset to create a life for a bogus hurricane. Examination of the PDFs reveals that they 
are faithful to the observed patterns for storms nearing Florida, and the evolution of any 
particular hurricane appears realistic. 
 
     The second component of the meteorological model is the wind field generated for a given 
hurricane, which only comes into play when the hurricane comes close enough to place high 
winds over any given ZIP Code of Florida. To generate a wind field the minimum sea-level 
pressure (MSLP) found in the eye, the RMW at landfall, and a distant environmental pressure 
(1013 mb) are entered into the Holland (1980) B model for the axisymmetric pressure 
distribution around the hurricane. The behavior of the RMW is based on a variety of sources that 
include Ho et al. (1987), DeMaria’s extension of the best track data, H*wind analyses, and 
aircraft reconnaissance radial wind profiles. The B coefficient is based on the extensive aircraft 
dataset acquired in reconnaissance and research flights over the last few decades. RMW and B 
use a random or error term to introduce variety into the model.  The Holland pressure field is 
used to produce a gradient wind at the top of the boundary layer. The winds in the boundary 
layer are estimated following the work proposed by Ooyama (1969) and later utilized by Shapiro 
(1983) which includes friction and advection effects. These boundary layer winds are reduced to 
surface winds (10 m) using reduction factors based on the work of Powell et al. (2003). 
Maximum sustained winds and 3 second gusts are estimated using the guidance of Vickery and 
Skerlj (2005). Once the hurricane winds come ashore there are further adjustments to the wind to 
account for local roughness as well as the roughness of the terrain found upstream of the location 
under scrutiny.  The pressure decay of the hurricane is modeled to fit the observations presented 
by Vickery (2005). 
 
      Gradient balance has been demonstrated to be an accurate representation for vortex scale 
winds above the boundary layer by Willoughby (1990) and is a fine initial condition. The slab 
boundary layer concept of Ooyama and Shapiro has been shown to produce wind fields much 
like observed once storm translation and surface friction come into play.  The reduction to 10 m 
altitude is based on Powell et al. (2003); they use the state of the art Global Positioning System 
sondes to compare surface and boundary layer winds.        
     
      Perhaps the most questionable part of the wind portion of the model is the reliance on the 
estimates of the RMW at landfall. The scatter in RMW for a given MSLP is large; larger RMWs 
coupled with the B parameter control the size of the annulus of the damaging winds. The typical 
length of an aircraft leg from the eye is about 150 km so the choice of the B parameter is based 
on a small radial distance in the majority of hurricanes. The collection of quality wind 
observations over land in hurricanes remains a daunting task; therefore the actual response of the 
hurricane winds to variations in roughness is less certain.  Applying roughness as a function of 
ZIP Code is a coarse approximation to reality. However, this is the approach chosen by the 
commission, and given the data limitations, a reasonable course to take. 
 
M-3 Landfall Intensity 

     The model uses one minute winds at 10 m elevation to determine intensity at landfall and 
categorizes each hurricane according to the Saffir-Simpson classification. The model considers 
any hurricane that makes landfall or comes close enough to place high winds over Florida. 
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Multiple landfalls are accounted for, and decay over land between these landfalls is also 
estimated. Maximum wind speeds for each category of the Saffir-Simpson scheme are 
reasonable as is the worst possible hurricane the model generates. Simulations are conducted for 
a hypothetical 60,000 years. Any real climate change would alter results, but maybe not as much 
as have an actual record of order of 1,000 years to base the PDFs on. 
 
M-4 Hurricane Probabilities 

      Form M-1 demonstrates that the model is simulating the landfalls very well for the entire 
state, region A (NW Florida) and region B (SW Florida).  There are subsections of the state 
where the historical and the simulated landfalls have a discrepancy. In region C (SE Florida) the 
observations show an unrealistic bias toward Category 3 storms. This is likely due to an 
overestimate of intensity for the hurricanes prior to the advent of aircraft sampling or advanced 
satellite techniques. The historical distribution for region C also does not fit any accepted 
distributions that we typically see for atmospheric phenomena. This discrepancy is probably due 
to the shortness of the historical record. I note that other models also have difficulty with this 
portion of the coast. I believe the modeled distribution, based on tens of thousands of years, is 
more defensible than the purported standard.  Regions D (NE Florida) and E (Georgia) have 
virtually no distribution to simulate, again pointing to a very short historical record. There is no 
documented physical reason why these two regions have escaped landfall events. Perhaps a 
preferred shape of the Bermuda High may bias the situation, but this remains speculative. 
 
M-5 Land Friction and Weakening 

     Land use and land cover are based on high resolution satellite imagery. Roughness for a 
particular location is then based on HAZUS tables that assign a roughness to a particular land 
use.  There are newer assessments from other groups but the techniques were not consistently 
applied throughout the state, nor are the updated HAZUS maps for 2000 available yet. Winds at 
a particular location are a function of the roughness at that point and conditions upwind.  A 
pressure decay model based on the work of Vickery (2005) produces weakening winds that are 
reasonable approximations of the observed decay rates of several hurricanes that made landfall in 
Florida in 2004 and 2005.  
 
     The maps (Form M-2) of the 100 year return period maximum sustained winds shows the 
following trends: (1) a reduction in the sustained winds from south to north, (2) a reduction of 
winds from coastal to inland ZIP Codes, and (3) the highest winds in the Keys and along the SE 
and SW coasts. The plotting thresholds requested by the commission partially obfuscate the 
gradients in wind speed, but Form M-2 produced with finer contours highlights the above trends 
clearly. The open terrain maps look logical; the actual terrain maps are perhaps overly sensitive 
to the local roughness. Convective scale motions, which cannot be resolved in this type of model, 
would probably be responsible for making the winds closer to the open terrain results. 
 
M-6 Logical Relationships of Hurricane Characteristics 

      The RMW is a crucial but poorly measured variable. Making RMW a function of intensity 
and latitude explains only a small portion of the variance (~20%). Examination of aircraft 
reconnaissance radial profiles shows that RMW is highly variable. Currently there are no other 
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schemes available to explain more of the variance. Form M-3 reflects the large range of RMW. 
Note that only the more intense hurricanes (MSLP < 940 mb) show a trend, and only with the 
upper part of the range. Even open ocean studies of the RMW show such large scatter. 
 
      Tests done during my visits show that wind speed decreases as a function of roughness, all 
other variables being held constant. The evolution of the wind field as a hurricane comes ashore 
is logical.  
 
Summary 

     The consortium that has assembled the meteorological portion of the Public Model for 
Hurricane Wind Losses for the State of Florida is using the HURDAT with corrections based on 
other refereed literature.  These data yield a series of probability density functions that describe 
frequency, location, and intensity at landfall.  Once a hurricane reaches close enough to the coast 
the gradient winds are estimated using the equations by Holland (1980), then a sophisticated 
wind model (Ooyama 1969, Shapiro 1983) is applied to calculate the boundary layer winds. 
Reduction of this wind to a surface value is based on recent boundary layer theory and 
observations. Here the consortium has exploited other sources of data (e.g., NOAA/AOML/HRD 
aircraft wind profiles and GPS sondes) to produce a surface wind field. As the wind field 
transitions from marine to land exposure changes in roughness are taken into account.  Form M-1 
(frequency and category at landfall as a function of coastal segment) and Form M-2 (100 year 
return maximum sustained winds for Florida) highlight the good performance of the model.  
 
      I suspect that the differences between the historical record and the simulation are largely due 
to the shortness and uncertainty of the record. If the consortium had the luxury of 1000 years of 
observations agreement between the record and the simulation would be improved. I believe that 
the meteorological portion of the model is meeting all the standards established by the 
commission. Tests of the model against H*Wind analyses and the production of wind speed 
swaths go beyond the typical quality controls of  prior models and demonstrate that this model is 
worthy of consideration by the commission.  
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October 29, 2012 
 
Dr. Shahid Hamid 
Professor of Finance, 
Department of Finance, CBA 
and International Hurricane Research Center 
Florida International University, RB 202 B 
Miami, FL  33199 
 
Re:  Florida Public Hurricane Loss Model 
       Version 5.0 
       Independent Actuarial Review 
 
Dear Dr. Hamid: 
 
AMI Risk Consultants, Inc. was engaged by the International Hurricane Research Center 
(“IHRC”) at Florida International University (“FIU”) to review the actuarial components 
of its hurricane model, Florida Public Hurricane Loss Model, Version 5.0.   I am a 
Fellow of the Casualty Actuarial Society, a Member of the American Academy of 
Actuaries, and have more than twenty-five years of actuarial experience in the 
property/casualty insurance industry.  I am an employee of the actuarial consulting firm 
AMI Risk Consultants, Inc. 
 
It is my understanding that between Versions 4.1 and 5.0 there were significant changes 
to the Florida Public Hurricane Loss Model (“FPHLM”).    Those changes included: 
 

• Revisions to distribution functions in the storm track generator 
 

• Modification of the hurricane PBL height 
 

• Updated zip code centroids 
 

• Updated boundaries for the Wind Borne Debris Region 

• Additional Personal Residential vulnerability matrices for metal roof and metal 
shutters 
 

• Additional Personal Residential vulnerability matrices refining the strong model.    
 

•  Revisions to the Personal Residential strong model vulnerabilities increasing 
window capacities. 
 

• Numerous additions, refinements and modifications to the Commercial 
Residential vulnerabilities. 
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Florida Public Hurricane Loss Model v5.0 
Actuarial Review 
October 29, 2012 
Page 2 of 3 
 
 
My review is based the IHRC’s November 2012 model submission to the Commission.       
I revisited each of the Actuarial Standards, and have the following comments: 
 
Standard A-1:  This year additional validation data was received for the 2005 storm 
season.  I reviewed the processing of that exposure and loss data, including sample 
reports produced and procedures followed during pre-processing/validation of the 
exposures.   In the Standards I expanded the disclosure of the steps taken during pre-
processing to include the validation of mitigation attributes and the initial model run used 
to uncover any inconsistencies between attributes. 
 
I also reviewed the revised data input record formats for Personal and Commercial 
Residential policies.  The revision separates the inputs into minimum attributes required 
and secondary modifiers to be provided if available.   
 
Standard A-2:  I was directly involved in the testing of included and excluded bypassing 
storms for Version 2.6 of the model.  Although Version 5.0 incorporates a different set of 
stochastic storms, the criteria for inclusion/exclusion have not changed, and the computer 
code categorizing each storm is also unchanged.  Therefore, I did not sample bypassing 
storms this year.   
 
Standard A-3:  Although there were major refinements to the vulnerability component 
of the Commercial Residential model for both low rise and mid/high rise exposures, the 
basic approach to estimating loss costs and probable maximum loss has not changed in 
this version of the model for either Personal or Commercial Residential. 
 
In particular the approach to incorporating demand surge in the loss costs and probable 
maximum loss levels did not change.  Demand surge factors were calculated for each 
storm in the new stochastic set using the same functions and parameters as were applied 
in the previous submission.  However, since the advent of geocoding, the model no 
longer uses weighted average (across the stochastic set) demand surge factors by region, 
and instead applies the individual storm demand surge factors to each exposure’s losses 
by storm.  Consequently the disclosure in the Standards was updated to eliminate 
references to weighted average demand surge factors.  
 
Standard A-4:    The methods used by the model to reflect the impact of deductibles and 
policy limits on losses have not changed since the prior submission.   
 
Standard A-5:  The methods used by the model to estimate contents and time element 
losses have not changed since the prior submission.   
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Florida Public Hurricane Loss Model v5.0 
Actuarial Review 
October 29, 2012 
Page 3 of 3 
 
 
Standard A-6:   I tested the loss costs for compliance with this standard.  I examined 
Forms A-1, A-2, A-3, A-4 and A-8 for reasonability, and compared the results to the 
prior submission.  I examined loss cost changes by county, separating the impacts of 
meteorology and engineering revisions.  Larger positive and negative changes were 
examined at the zip code level.  There were significant loss cost changes for a number of 
counties since the model underwent revisions to both the meteorological and engineering 
components.   
 
I identified base set storms with significant changes in modeled losses and determined the 
underlying cause. 
 
I identified the anomalies in Form A-6, and determined the reason for each. 
 
I reviewed Form A-8 for overall reasonability and verified the return time and uncertainty 
intervals with manual calculations for a sample of entries.   
 
I received assistance from the Computer Science team in testing at the zip code level in 
instances where compliance could not be verified from the weighted averages in  
Form A-4. 
 
Conclusion: 
 
My conclusion is that the Florida Public Hurricane Model v5.0 reflects reasonable 
actuarial assumptions, and meets the Commission’s Standards A-1 through A-6. 
 
If you have any questions about my review, I would be happy to discuss them. 
 
Sincerely, 

 
Gail Flannery, FCAS, MAAA 
Consulting Actuary 
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FPHLM V5.0 2013 

 

Appendix B – Form A-2: Base Hurricane Storm Set Statewide Loss Costs 

379

grullont
Typewritten Text

grullont
Typewritten Text



ID
Landfall/Closest 

Approach Date
Year Name

Personal and Commercial 

Residential Insured 

Losses ($)

Dollar Contribution

003 8/10/1901 1901 NoName4‐1901 297,285,050 2,654,331

005 9/11/1903 1903 NoName3‐1903 9,249,291,642 82,582,961

010 10/16/1904 1904 NoName4‐1904 3,133,305,798 27,975,945

015 6/16/1906 1906 NoName2‐1906 2,351,612,626 20,996,541

017 9/25/1906 1906 NoName6‐1906 739,059,845 6,598,749

020 10/8/1906 1906 NoName8‐1906 11,744,658,273 104,863,020

025 10/11/1909 1909 NoName11‐1909 1,110,887,341 9,918,637

030 10/17/1910 1910 NoName5‐1910 14,077,194,200 125,689,234

031 8/8/1911 1911 NoName2‐1911 245,086,065 2,188,268

034 9/10/1912 1912 NoName4‐1912 1,368,970 12,223

035 7/31/1915 1915 NoName1‐1915 996,414,076 8,896,554

040 9/3/1915 1915 NoName4‐1915 405,426,460 3,619,879

043 7/4/1916 1916 NoName2‐1916 446,120,731 3,983,221

045 10/17/1916 1916 NoName14‐1916 1,110,498,492 9,915,165

050 9/26/1917 1917 NoName4‐1917 2,521,678,175 22,514,984

055 9/9/1919 1919 NoName2‐1919 233,421,559 2,084,121

060 10/24/1921 1921 NoName6‐1921 22,201,299,021 198,225,884

065 9/13/1924 1924 NoName5‐1924 150,765,260 1,346,118

070 10/20/1924 1924 NoName10‐1924 6,630,937,447 59,204,799

080 7/27/1926 1926 NoName1‐1926 9,875,287,598 88,172,211

085 9/18/1926 1926 NoName7‐1926 45,801,230,203 408,939,555

086 10/20/1926 1926 NoName10‐1926 192,727,650 1,720,783

090 8/7/1928 1928 NoName1‐1928 5,595,016,305 49,955,503

095 9/16/1928 1928 NoName4‐1928 40,666,448,853 363,093,293

100 9/27/1929 1929 NoName2‐1929 18,634,760,555 166,381,791

104 8/29/1932 1932 NoName3‐1932 1,221,267,072 10,904,170

105 7/30/1933 1933 NoName5‐1933 800,996,390 7,151,753

110 9/3/1933 1933 NoName11‐1933 13,948,752,848 124,542,436

115 9/2/1935 1935 NoName3‐1935 14,863,250,867 132,707,597

120 11/4/1935 1935 NoName7‐1935 6,480,040,654 57,857,506

125 7/27/1936 1936 NoName5‐1936 727,437,920 6,494,981

130 8/11/1939 1939 NoName2‐1939 3,310,843,876 29,561,106

133 8/5/1940 1940 NoName3‐1940 0 0

135 10/5/1941 1941 NoName5‐1941 29,658,140,930 264,804,830

140 10/18/1944 1944 NoName11‐1944 22,646,993,296 202,205,297

145 6/22/1945 1945 NoName1‐1945 9,104,775,386 81,292,637

150 9/15/1945 1945 NoName9‐1945 21,014,144,611 187,626,291

155 10/7/1946 1946 NoName5‐1946 6,002,908,316 53,597,396

160 9/17/1947 1947 NoName4‐1947 23,571,616,347 210,460,860

165 10/11/1947 1947 NoName8‐1947 7,424,634,620 66,291,381

170 9/21/1948 1948 NoName7‐1948 5,430,867,691 48,489,890

175 10/5/1948 1948 NoName8‐1948 2,043,480,010 18,245,357

180 8/26/1949 1949 NoName2‐1949 24,156,763,385 215,685,387

184 8/29/1950 1950 BAKER‐1950 468,684,509 4,184,683

185 9/3/1950 1950 EASY‐1950 14,349,932,227 128,124,395

190 10/17/1950 1950 KING‐1950 6,053,599,186 54,049,993

Form A‐2: Base Hurricane Storm Set Statewide Loss Costs
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ID
Landfall/Closest 

Approach Date
Year Name

Personal and Commercial 

Residential Insured 

Losses ($)

Dollar Contribution

Form A‐2: Base Hurricane Storm Set Statewide Loss Costs

195 9/25/1953 1953 FLORENCE‐1953 264,464,308 2,361,288

200 9/24/1956 1956 FLOSSY‐1956 678,096,930 6,054,437

205 9/9/1960 1960 DONNA‐1960 22,127,374,685 197,565,845

206 9/14/1960 1960 ETHEL‐1960 586 5

210 8/26/1964 1964 CLEO‐1964 19,000,856,682 169,650,506

215 9/9/1964 1964 DORA‐1964 4,104,689,006 36,649,009

220 10/14/1964 1964 ISBELL‐1964 9,116,406,606 81,396,488

225 9/7/1965 1965 BETSY‐1965 6,234,697,332 55,666,940

230 6/8/1966 1966 ALMA‐1966 12,020,558,305 107,326,413

235 9/21/1966 1966 INEZ‐1966 320,970,271 2,865,806

240 10/16/1968 1968 GLADYS‐1968 5,120,532,351 45,719,039

241 8/16/1969 1969 CAMILLE‐1969 0 0

245 6/18/1972 1972 AGNES‐1972 128,893,018 1,150,831

250 9/22/1975 1975 ELOISE‐1975 1,363,515,803 12,174,248

255 9/3/1979 1979 DAVID‐1979 8,602,329,303 76,806,512

256 9/12/1979 1979 FREDERIC‐1979 1,084,358,790 9,681,775

259 8/29/1985 1985 ELENA‐1985 146,486,723 1,307,917

260 11/20/1985 1985 KATE‐1985 384,942,373 3,436,985

265 10/12/1987 1987 FLOYD‐1987 135,930,782 1,213,668

270 8/24/1992 1992 ANDREW‐1992 23,212,009,742 207,250,087

275 8/1/1995 1995 ERIN‐1995 4,523,994,100 40,392,804

280 10/3/1995 1995 OPAL‐1995 3,585,425,412 32,012,727

284 7/16/1997 1997 DANNY‐1997 61,840,672 552,149

285 9/1/1998 1998 EARL‐1998 9,868,027 88,107

286 9/25/1998 1998 GEORGES‐1998 387,083,674 3,456,104

290 10/15/1999 1999 IRENE‐1999 4,011,741,151 35,819,117

295 8/13/2004 2004 CHARLEY‐2004 7,621,016,619 68,044,791

300 9/4/2004 2004 FRANCES‐2004 10,283,092,057 91,813,322

305 9/14/2004 2004 IVAN‐2004 605,649,046 5,407,581

310 9/25/2004 2004 JEANNE‐2004 13,135,037,226 117,277,118

315 7/7/2005 2005 DENNIS‐2005 849,308,323 7,583,110

320 8/24/2005 2005 KATRINA‐2005 3,807,380,269 33,994,467

325 9/18/2005 2005 RITA‐2005 112,941,463 1,008,406

330 10/20/2005 2005 WILMA‐2005 16,340,299,901 145,895,535

331 8/30/2008 2008 GUSTAV‐2008 223 2

333 9/9/2008 2008 IKE‐2008 32,487 290

Total 591,072,736,584
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FPHLM V5.0 2013 

 

Appendix C – Form A-3: Cumulative Losses from the 2004 Hurricane 
Season  
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

32025 $7,518,219 0.02%

32034 $1,167,816 0.00%

32052 $1,702,749 0.01%

32053 $959,368 0.00%

32059 $729,619 0.00%

32062 $890,231 0.00%

32066 $1,475,173 0.00%

32080 $52,295,525 0.16%

32082 $106,492,787 0.33%

32084 $34,249,559 0.11%

32086 $18,940,797 0.06%

32095 $8,415,849 0.03%

32102 $1,776,464 0.01%

32112 $2,342,115 0.01%

32113 $6,543,447 0.02%

32114 $87,845,103 0.28%

32117 $87,319,030 0.27%

32118 $170,620,939 0.54%

32119 $151,885,765 0.48%

32124 $7,136,110 0.02%

32127 $211,077,277 0.66%

32128 $90,460,835 0.28%

32129 $83,828,118 0.26%

32130 $3,197,320 0.01%

32132 $45,492,710 0.14%

32134 $3,446,739 0.01%

32135 $1,219,527 0.00%

32136 $59,728,797 0.19%

32137 $116,554,453 0.37%

32141 $110,188,969 0.35%

32148 $3,134,478 0.01%

32159 $83,398,304 0.26%

32162 $116,570,803 0.37%

32164 $72,608,305 0.23%

32168 $151,724,922 0.48%

32169 $144,747,297 0.45%

32174 $277,090,501 0.87%

32176 $186,372,604 0.58%

32179 $11,258,901 0.04%

32180 $1,576,022 0.00%

32192 $825,607 0.00%

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

32195 $5,733,145 0.02%

32233 $15,679,522 0.05%

32250 $21,063,266 0.07%

32266 $13,122,027 0.04%

32301 $11,672,552 0.04%

32302 $2,114,125 0.01%

32303 $25,320,469 0.08%

32304 $6,670,029 0.02%

32305 $4,492,896 0.01%

32308 $19,235,110 0.06%

32309 $22,425,793 0.07%

32310 $5,335,252 0.02%

32311 $12,945,655 0.04%

32312 $35,162,544 0.11%

32317 $10,474,505 0.03%

32327 $11,018,670 0.03%

32331 $1,552,669 0.00%

32340 $3,449,250 0.01%

32344 $6,083,476 0.02%

32346 $2,444,564 0.01%

32347 $4,392,676 0.01%

32348 $3,582,469 0.01%

32359 $1,608,807 0.01%

32407 $654,953 0.00%

32408 $899,309 0.00%

32413 $19,185,704 0.06%

32501 $12,804,399 0.04%

32502 $1,097,065 0.00%

32503 $41,210,201 0.13%

32504 $31,278,374 0.10%

32505 $17,631,854 0.06%

32506 $38,830,860 0.12%

32507 $88,822,559 0.28%

32514 $35,745,622 0.11%

32526 $43,462,390 0.14%

32533 $30,549,819 0.10%

32534 $11,540,284 0.04%

32535 $2,437,717 0.01%

32541 $27,231,392 0.09%

32547 $18,448,211 0.06%

32548 $13,871,895 0.04%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

32550 $1,231,514 0.00%

32561 $50,029,113 0.16%

32563 $31,430,683 0.10%

32565 $3,600,563 0.01%

32566 $34,199,779 0.11%

32568 $2,409,494 0.01%

32569 $10,040,086 0.03%

32570 $18,254,701 0.06%

32571 $25,662,505 0.08%

32577 $5,297,604 0.02%

32578 $608,440 0.00%

32579 $9,584,591 0.03%

32580 $2,561,076 0.01%

32583 $14,318,855 0.04%

32601 $5,558,036 0.02%

32603 $1,214,648 0.00%

32605 $18,016,867 0.06%

32606 $15,103,252 0.05%

32607 $14,175,571 0.04%

32608 $19,948,466 0.06%

32609 $5,383,060 0.02%

32615 $9,012,820 0.03%

32617 $5,368,917 0.02%

32618 $5,858,756 0.02%

32619 $1,566,479 0.00%

32621 $3,018,500 0.01%

32622 $550,238 0.00%

32625 $3,673,868 0.01%

32626 $3,921,764 0.01%

32628 $1,138,364 0.00%

32631 $529,780 0.00%

32640 $4,375,904 0.01%

32641 $3,618,849 0.01%

32648 $964,825 0.00%

32653 $10,410,085 0.03%

32656 $6,870,057 0.02%

32664 $1,180,553 0.00%

32666 $3,787,459 0.01%

32667 $4,679,650 0.01%

32668 $6,271,142 0.02%

32669 $14,207,216 0.04%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

32680 $2,874,479 0.01%

32681 $548,837 0.00%

32686 $7,007,718 0.02%

32692 $762,101 0.00%

32693 $3,472,783 0.01%

32694 $668,159 0.00%

32696 $9,761,739 0.03%

32701 $51,681,894 0.16%

32702 $1,269,937 0.00%

32703 $70,653,416 0.22%

32707 $150,410,260 0.47%

32708 $254,490,277 0.80%

32709 $7,718,986 0.02%

32712 $58,879,267 0.18%

32713 $53,890,041 0.17%

32714 $69,676,167 0.22%

32718 $702,071 0.00%

32720 $22,737,353 0.07%

32724 $46,132,590 0.14%

32725 $131,658,348 0.41%

32726 $39,656,148 0.12%

32730 $13,756,649 0.04%

32732 $30,930,687 0.10%

32735 $8,061,712 0.03%

32736 $12,016,134 0.04%

32738 $132,943,819 0.42%

32744 $9,333,778 0.03%

32746 $178,899,817 0.56%

32750 $98,494,125 0.31%

32751 $117,970,293 0.37%

32754 $50,564,406 0.16%

32757 $30,560,567 0.10%

32759 $11,438,001 0.04%

32763 $25,348,486 0.08%

32764 $11,778,309 0.04%

32765 $303,985,981 0.95%

32766 $80,998,421 0.25%

32767 $1,100,979 0.00%

32771 $152,307,199 0.48%

32773 $67,421,860 0.21%

32775 $1,817,007 0.01%
386

grullont
Typewritten Text
Appendix C

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text



ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

32776 $21,965,494 0.07%

32777 $686,351 0.00%

32778 $38,464,407 0.12%

32779 $194,908,570 0.61%

32780 $168,172,664 0.53%

32784 $17,256,001 0.05%

32789 $234,395,676 0.73%

32792 $179,641,164 0.56%

32796 $86,185,114 0.27%

32798 $4,233,021 0.01%

32801 $29,285,480 0.09%

32802 $761,277 0.00%

32803 $117,458,308 0.37%

32804 $118,986,511 0.37%

32805 $45,104,486 0.14%

32806 $156,817,041 0.49%

32807 $102,490,310 0.32%

32808 $84,802,263 0.27%

32809 $92,090,585 0.29%

32810 $68,205,555 0.21%

32811 $36,540,870 0.11%

32812 $151,984,399 0.48%

32814 $21,595,748 0.07%

32817 $145,863,755 0.46%

32818 $99,848,322 0.31%

32819 $179,500,669 0.56%

32820 $27,386,434 0.09%

32821 $53,770,941 0.17%

32822 $125,231,540 0.39%

32824 $134,064,805 0.42%

32825 $227,234,670 0.71%

32826 $59,015,040 0.19%

32827 $36,211,146 0.11%

32828 $227,621,152 0.71%

32829 $67,782,787 0.21%

32832 $65,238,933 0.20%

32833 $37,319,156 0.12%

32835 $117,855,791 0.37%

32836 $129,457,764 0.41%

32837 $219,523,662 0.69%

32839 $64,466,564 0.20%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

32901 $80,406,826 0.25%

32903 $136,513,254 0.43%

32904 $105,599,004 0.33%

32905 $93,716,835 0.29%

32907 $156,436,649 0.49%

32908 $30,597,190 0.10%

32909 $111,547,073 0.35%

32920 $51,278,855 0.16%

32922 $42,048,395 0.13%

32926 $85,786,619 0.27%

32927 $107,433,981 0.34%

32931 $167,085,358 0.52%

32932 $1,164,172 0.00%

32934 $93,833,203 0.29%

32935 $175,939,329 0.55%

32937 $205,761,059 0.65%

32940 $212,798,603 0.67%

32948 $10,226,289 0.03%

32949 $17,586,278 0.06%

32950 $31,325,136 0.10%

32951 $164,342,754 0.52%

32952 $164,395,939 0.52%

32953 $129,439,940 0.41%

32955 $184,836,951 0.58%

32957 $1,403,744 0.00%

32958 $175,385,626 0.55%

32960 $137,404,192 0.43%

32961 $1,105,252 0.00%

32962 $138,455,871 0.43%

32963 $876,227,374 2.75%

32964 $1,218,765 0.00%

32966 $99,964,859 0.31%

32967 $94,678,411 0.30%

32968 $73,773,854 0.23%

32970 $735,513 0.00%

32976 $125,945,249 0.39%

33060 $795,029 0.00%

33062 $3,749,373 0.01%

33063 $963,928 0.00%

33064 $27,851,734 0.09%

33065 $822,108 0.00%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33067 $504,151 0.00%

33069 $1,604,227 0.01%

33308 $3,093,444 0.01%

33401 $50,707,342 0.16%

33403 $24,053,028 0.08%

33404 $67,907,784 0.21%

33405 $58,864,246 0.18%

33406 $58,522,678 0.18%

33407 $56,252,940 0.18%

33408 $131,805,825 0.41%

33409 $43,896,357 0.14%

33410 $183,644,457 0.58%

33411 $206,647,422 0.65%

33412 $100,404,631 0.31%

33413 $36,782,319 0.12%

33414 $224,826,031 0.70%

33415 $58,867,099 0.18%

33417 $50,446,387 0.16%

33418 $315,204,401 0.99%

33426 $41,513,390 0.13%

33428 $29,759,783 0.09%

33430 $12,042,135 0.04%

33431 $16,163,055 0.05%

33432 $21,966,485 0.07%

33433 $35,603,555 0.11%

33434 $23,243,677 0.07%

33435 $49,460,747 0.16%

33436 $81,451,703 0.26%

33437 $159,619,444 0.50%

33438 $2,087,805 0.01%

33440 $20,272,297 0.06%

33441 $10,560,899 0.03%

33442 $14,420,018 0.05%

33444 $16,518,057 0.05%

33445 $39,987,769 0.13%

33446 $50,672,194 0.16%

33455 $196,710,594 0.62%

33458 $253,758,886 0.80%

33460 $54,724,222 0.17%

33461 $42,185,310 0.13%

33462 $70,381,942 0.22%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33463 $90,407,312 0.28%

33467 $186,983,482 0.59%

33468 $515,163 0.00%

33469 $136,068,958 0.43%

33470 $101,085,863 0.32%

33471 $10,015,982 0.03%

33475 $1,674,758 0.01%

33476 $8,679,509 0.03%

33477 $140,702,720 0.44%

33478 $91,624,029 0.29%

33480 $332,488,397 1.04%

33483 $28,198,423 0.09%

33484 $33,504,314 0.11%

33486 $18,762,771 0.06%

33487 $36,412,035 0.11%

33493 $2,902,369 0.01%

33496 $46,606,801 0.15%

33498 $21,505,389 0.07%

33510 $17,522,576 0.05%

33511 $33,225,446 0.10%

33513 $15,875,982 0.05%

33514 $2,429,304 0.01%

33521 $1,346,059 0.00%

33523 $20,851,486 0.07%

33525 $29,551,026 0.09%

33527 $18,619,859 0.06%

33534 $5,585,120 0.02%

33538 $10,131,358 0.03%

33540 $11,987,275 0.04%

33541 $26,811,839 0.08%

33542 $23,647,495 0.07%

33543 $60,348,125 0.19%

33544 $42,593,101 0.13%

33547 $17,198,515 0.05%

33548 $12,322,640 0.04%

33549 $35,276,024 0.11%

33556 $57,259,856 0.18%

33558 $36,211,661 0.11%

33559 $17,274,483 0.05%

33563 $13,960,612 0.04%

33565 $30,650,334 0.10%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33566 $33,262,994 0.10%

33567 $10,313,062 0.03%

33569 $52,215,157 0.16%

33570 $9,126,718 0.03%

33572 $18,489,070 0.06%

33573 $17,995,973 0.06%

33576 $10,706,903 0.03%

33584 $15,917,412 0.05%

33585 $2,346,776 0.01%

33592 $11,805,103 0.04%

33594 $57,960,878 0.18%

33597 $11,443,608 0.04%

33598 $3,601,697 0.01%

33602 $1,272,976 0.00%

33604 $666,110 0.00%

33606 $16,768,738 0.05%

33609 $847,949 0.00%

33610 $12,739,689 0.04%

33611 $23,732,287 0.07%

33612 $16,187,001 0.05%

33613 $29,133,798 0.09%

33614 $1,496,805 0.00%

33615 $23,935,325 0.08%

33616 $5,723,278 0.02%

33617 $41,025,910 0.13%

33618 $42,555,921 0.13%

33619 $11,439,188 0.04%

33624 $61,151,245 0.19%

33625 $32,169,615 0.10%

33626 $27,315,695 0.09%

33629 $1,735,822 0.01%

33635 $8,742,244 0.03%

33637 $6,014,213 0.02%

33647 $118,693,768 0.37%

33701 $589,843 0.00%

33702 $598,694 0.00%

33703 $604,375 0.00%

33704 $16,881,201 0.05%

33705 $13,585,222 0.04%

33706 $38,899,979 0.12%

33707 $31,813,949 0.10%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of
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(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33708 $40,947,608 0.13%

33709 $11,719,651 0.04%

33710 $23,393,022 0.07%

33711 $9,491,044 0.03%

33712 $10,703,892 0.03%

33713 $16,763,764 0.05%

33714 $6,924,829 0.02%

33715 $16,292,698 0.05%

33716 $1,925,529 0.01%

33755 $13,298,093 0.04%

33756 $21,995,175 0.07%

33760 $5,429,497 0.02%

33761 $14,687,589 0.05%

33762 $5,114,330 0.02%

33764 $16,179,791 0.05%

33765 $6,292,792 0.02%

33767 $30,596,473 0.10%

33770 $15,631,641 0.05%

33771 $11,089,108 0.03%

33772 $29,135,189 0.09%

33773 $10,668,925 0.03%

33774 $36,030,179 0.11%

33776 $32,621,128 0.10%

33777 $22,931,214 0.07%

33778 $16,098,204 0.05%

33781 $11,035,781 0.03%

33782 $12,907,110 0.04%

33785 $25,845,021 0.08%

33786 $12,981,514 0.04%

33801 $35,008,798 0.11%

33803 $48,447,261 0.15%

33805 $18,389,067 0.06%

33809 $61,732,519 0.19%

33810 $52,423,693 0.16%

33811 $22,718,746 0.07%

33812 $9,352,353 0.03%

33813 $85,998,665 0.27%

33815 $6,552,334 0.02%

33820 $1,153,606 0.00%

33823 $53,555,312 0.17%

33825 $93,718,779 0.29%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33827 $20,013,124 0.06%

33830 $51,331,698 0.16%

33834 $6,324,069 0.02%

33836 $589,758 0.00%

33837 $70,562,041 0.22%

33838 $12,812,077 0.04%

33839 $8,622,611 0.03%

33841 $18,517,246 0.06%

33843 $42,428,638 0.13%

33844 $126,489,081 0.40%

33846 $512,447 0.00%

33847 $781,094 0.00%

33848 $2,112,027 0.01%

33849 $1,047,382 0.00%

33850 $19,670,538 0.06%

33851 $4,629,720 0.01%

33852 $117,192,194 0.37%

33853 $67,139,266 0.21%

33855 $7,924,934 0.02%

33857 $7,156,149 0.02%

33858 $814,567 0.00%

33859 $40,571,811 0.13%

33860 $15,898,891 0.05%

33865 $1,726,815 0.01%

33867 $1,034,207 0.00%

33868 $15,262,242 0.05%

33870 $72,240,101 0.23%

33872 $93,912,065 0.29%

33873 $30,365,642 0.10%

33875 $47,987,779 0.15%

33876 $22,240,282 0.07%

33877 $1,363,331 0.00%

33880 $73,786,626 0.23%

33881 $103,625,111 0.32%

33884 $174,209,908 0.55%

33890 $14,530,680 0.05%

33896 $21,348,594 0.07%

33897 $48,577,137 0.15%

33898 $77,623,470 0.24%

33901 $33,158,327 0.10%

33903 $74,892,093 0.23%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33904 $134,277,607 0.42%

33905 $40,752,870 0.13%

33907 $24,084,264 0.08%

33908 $94,064,602 0.29%

33909 $45,204,767 0.14%

33912 $72,142,011 0.23%

33913 $25,396,864 0.08%

33914 $140,687,325 0.44%

33916 $11,945,777 0.04%

33917 $70,032,963 0.22%

33919 $65,753,031 0.21%

33920 $5,296,464 0.02%

33921 $91,328,652 0.29%

33922 $39,168,171 0.12%

33924 $117,224,745 0.37%

33928 $26,378,611 0.08%

33931 $36,676,337 0.12%

33935 $7,591,609 0.02%

33936 $21,612,449 0.07%

33945 $904,270 0.00%

33946 $22,657,830 0.07%

33947 $28,913,715 0.09%

33948 $61,105,066 0.19%

33950 $188,394,990 0.59%

33952 $115,322,185 0.36%

33953 $15,815,819 0.05%

33954 $39,118,371 0.12%

33955 $65,014,713 0.20%

33956 $45,303,391 0.14%

33957 $219,726,299 0.69%

33960 $1,745,819 0.01%

33966 $7,281,929 0.02%

33967 $12,891,704 0.04%

33971 $31,902,046 0.10%

33972 $11,216,325 0.04%

33980 $48,967,795 0.15%

33981 $27,768,731 0.09%

33982 $59,975,801 0.19%

33983 $70,218,797 0.22%

33990 $88,198,367 0.28%

33991 $49,923,858 0.16%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

33993 $45,267,858 0.14%

34102 $33,924,181 0.11%

34103 $22,104,192 0.07%

34105 $964,737 0.00%

34108 $36,437,127 0.11%

34109 $1,027,962 0.00%

34110 $2,950,594 0.01%

34112 $820,298 0.00%

34134 $67,712,962 0.21%

34135 $1,347,383 0.00%

34145 $35,070,989 0.11%

34202 $877,832 0.00%

34207 $506,909 0.00%

34209 $1,129,128 0.00%

34210 $10,121,750 0.03%

34212 $18,005,683 0.06%

34215 $2,270,692 0.01%

34216 $8,074,995 0.03%

34217 $27,021,474 0.08%

34219 $17,059,023 0.05%

34221 $650,881 0.00%

34223 $48,313,914 0.15%

34224 $43,002,465 0.13%

34228 $28,722,948 0.09%

34229 $14,273,144 0.04%

34231 $1,314,196 0.00%

34236 $13,272,771 0.04%

34242 $30,072,189 0.09%

34251 $4,953,843 0.02%

34266 $104,877,707 0.33%

34268 $551,960 0.00%

34269 $18,321,033 0.06%

34275 $571,509 0.00%

34285 $1,738,324 0.01%

34286 $39,270,414 0.12%

34287 $35,799,778 0.11%

34288 $18,805,062 0.06%

34289 $1,957,612 0.01%

34293 $34,279,181 0.11%

34420 $23,664,749 0.07%

34428 $18,447,436 0.06%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of

Losses
(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

34429 $21,940,631 0.07%

34430 $619,651 0.00%

34431 $26,798,015 0.08%

34432 $32,617,787 0.10%

34433 $14,829,328 0.05%

34434 $23,530,977 0.07%

34436 $16,602,037 0.05%

34442 $50,789,922 0.16%

34446 $41,213,879 0.13%

34448 $22,646,158 0.07%

34449 $3,348,734 0.01%

34450 $31,715,965 0.10%

34452 $29,434,715 0.09%

34453 $26,449,479 0.08%

34461 $29,739,055 0.09%

34465 $44,663,352 0.14%

34470 $21,707,725 0.07%

34471 $58,243,966 0.18%

34472 $46,458,278 0.15%

34473 $34,599,883 0.11%

34474 $34,573,030 0.11%

34475 $7,480,616 0.02%

34476 $61,752,619 0.19%

34479 $22,261,333 0.07%

34480 $30,458,340 0.10%

34481 $38,749,336 0.12%

34482 $42,254,836 0.13%

34484 $6,452,512 0.02%

34488 $4,404,083 0.01%

34491 $69,063,269 0.22%

34498 $737,575 0.00%

34601 $32,595,553 0.10%

34602 $17,002,828 0.05%

34604 $15,916,931 0.05%

34606 $63,147,710 0.20%

34607 $23,162,617 0.07%

34608 $69,904,206 0.22%

34609 $84,796,881 0.27%

34610 $15,968,142 0.05%

34613 $38,498,271 0.12%

34614 $10,505,783 0.03%
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Residential Monetary 
Contribution($)

Percent
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(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

34637 $10,564,917 0.03%

34638 $28,286,768 0.09%

34639 $46,831,449 0.15%

34652 $41,851,998 0.13%

34653 $33,482,523 0.11%

34654 $29,903,175 0.09%

34655 $74,490,425 0.23%

34660 $573,548 0.00%

34667 $74,854,866 0.23%

34668 $67,981,305 0.21%

34669 $17,106,651 0.05%

34677 $18,818,695 0.06%

34681 $2,613,577 0.01%

34683 $62,516,776 0.20%

34684 $19,093,189 0.06%

34685 $19,688,752 0.06%

34688 $20,075,239 0.06%

34689 $41,075,995 0.13%

34690 $15,697,905 0.05%

34691 $27,963,921 0.09%

34698 $27,925,055 0.09%

34705 $4,357,308 0.01%

34711 $153,151,768 0.48%

34714 $14,370,630 0.05%

34715 $22,368,667 0.07%

34731 $32,031,878 0.10%

34734 $12,565,337 0.04%

34736 $30,988,132 0.10%

34737 $11,842,748 0.04%

34739 $4,462,101 0.01%

34741 $82,786,288 0.26%

34743 $160,798,848 0.50%

34744 $211,655,714 0.66%

34746 $197,268,886 0.62%

34747 $100,415,635 0.31%

34748 $93,845,917 0.29%

34753 $7,016,939 0.02%

34755 $1,301,557 0.00%

34756 $9,710,909 0.03%

34758 $135,087,239 0.42%

34759 $130,043,860 0.41%
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ZIP Code
Personal and Commercial 

Residential Monetary 
Contribution($)

Percent
of
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(%)

Form A‐3:  Cumulative Losses from the 2004 Hurricane Season

34760 $1,692,708 0.01%

34761 $70,125,857 0.22%

34762 $1,396,867 0.00%

34769 $107,448,673 0.34%

34771 $83,669,138 0.26%

34772 $94,777,375 0.30%

34773 $7,120,738 0.02%

34785 $22,056,472 0.07%

34786 $228,248,510 0.72%

34787 $62,985,457 0.20%

34788 $33,506,746 0.11%

34797 $6,312,631 0.02%

34945 $20,491,600 0.06%

34946 $25,573,681 0.08%

34947 $56,517,542 0.18%

34949 $280,183,907 0.88%

34950 $41,067,262 0.13%

34951 $102,375,878 0.32%

34952 $192,755,838 0.60%

34953 $220,950,281 0.69%

34956 $12,256,790 0.04%

34957 $109,692,194 0.34%

34972 $37,410,055 0.12%

34973 $593,096 0.00%

34974 $79,073,198 0.25%

34981 $16,365,382 0.05%

34982 $103,370,293 0.32%

34983 $174,386,865 0.55%

34984 $71,065,336 0.22%

34986 $124,530,645 0.39%

34987 $20,418,472 0.06%

34990 $232,378,797 0.73%

34991 $785,889 0.00%

34992 $639,301 0.00%

34994 $65,588,897 0.21%

34996 $116,584,497 0.37%

34997 $222,971,623 0.70%

Total $31,846,397,645
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Alachua LOW 0.886 0.924 0.977 0.206 0.188 0.248 0.245 0.086

AVERAGE 1.021 1.031 3.147 0.225 0.210 0.314 0.295 0.334

HIGH 1.321 1.350 6.217 0.333 0.264 0.384 0.380 0.689

Baker LOW 0.590 0.583 1.324 0.130 0.119 0.171 0.206 0.298

AVERAGE 0.704 0.697 1.800 0.155 0.148 0.171 0.206 0.298

HIGH 0.715 0.712 2.024 0.163 0.155 0.171 0.206 0.298

Bay LOW 1.451 1.452 4.319 0.370 0.329 0.556 0.478 0.126

AVERAGE 2.833 2.493 8.913 0.772 0.710 1.950 1.241 5.416

HIGH 4.451 4.382 21.014 1.887 1.389 2.580 1.441 7.299

Bradford LOW 0.778 0.765 1.988 0.177 0.156 0.346 0.285 0.326

AVERAGE 0.899 0.885 2.426 0.202 0.178 0.346 0.285 0.334

HIGH 1.096 1.086 3.362 0.270 0.242 0.346 0.285 0.338

Brevard LOW 3.378 2.045 7.564 0.278 0.337 0.461 0.615 0.219

AVERAGE 5.140 4.712 16.265 0.812 0.875 1.648 2.096 5.788

HIGH 13.117 10.787 35.200 3.599 3.427 5.162 4.470 12.418

Broward LOW 3.205 2.580 3.172 0.570 0.705 0.721 0.771 0.531

AVERAGE 7.783 6.672 28.951 2.616 1.719 2.954 2.820 12.461

HIGH 16.942 15.687 57.108 4.970 4.717 8.131 7.538 24.506

Calhoun LOW 1.114 1.076 2.650 0.256 0.223 0.000 0.000 0.096

AVERAGE 1.182 1.148 3.242 0.270 0.241 0.000 0.000 0.096

HIGH 1.287 1.292 3.623 0.306 0.263 0.000 0.000 0.096

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Charlotte LOW 3.928 2.624 8.725 0.488 0.482 0.564 0.932 1.616

AVERAGE 5.298 4.503 12.427 0.846 0.634 1.625 1.074 2.798

HIGH 7.005 6.663 31.668 1.501 1.126 2.323 1.649 6.624

Citrus LOW 2.281 2.366 4.634 0.291 0.269 0.361 0.517 0.138

AVERAGE 3.067 2.639 5.945 0.371 0.328 0.681 0.661 0.764

HIGH 3.815 3.194 7.973 0.444 0.441 0.738 0.807 0.980

Clay LOW 0.857 0.860 1.964 0.190 0.177 0.234 0.206 0.083

AVERAGE 0.930 0.933 2.693 0.213 0.202 0.273 0.247 0.400

HIGH 1.200 1.125 4.743 0.253 0.237 0.339 0.341 0.581

Collier LOW 4.577 2.516 6.597 0.593 0.534 0.856 0.803 0.743

AVERAGE 6.414 5.396 20.907 1.069 0.855 1.637 1.599 4.113

HIGH 10.456 8.613 46.815 2.325 1.663 2.722 3.057 10.000

Columbia LOW 0.710 0.687 1.714 0.159 0.146 0.220 0.219 0.040

AVERAGE 0.779 0.760 2.084 0.167 0.154 0.242 0.225 0.324

HIGH 0.848 0.810 2.260 0.188 0.185 0.245 0.231 0.350

De Soto LOW 4.076 4.067 5.875 0.489 0.344 0.987 0.499 1.358

AVERAGE 4.579 4.348 9.214 0.601 0.591 1.016 0.908 1.468

HIGH 5.048 4.465 11.695 0.676 0.700 1.063 0.915 1.476

Dixie LOW 1.056 0.999 3.073 0.250 0.190 0.283 0.286 0.080

AVERAGE 1.207 1.038 3.354 0.277 0.213 0.543 0.510 0.271

HIGH 2.269 2.075 11.902 0.572 0.215 0.693 0.605 0.326
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Duval LOW 0.494 0.499 0.675 0.136 0.099 0.165 0.154 0.060

AVERAGE 0.954 0.894 2.558 0.221 0.200 0.290 0.308 1.073

HIGH 2.261 1.933 7.250 0.684 0.525 0.694 0.539 3.448

Escambia LOW 1.703 1.699 2.383 0.425 0.395 0.570 0.435 0.296

AVERAGE 2.843 2.775 10.853 0.791 0.758 1.401 1.372 4.076

HIGH 4.834 3.838 21.498 1.693 1.271 2.272 3.077 11.162

Flagler LOW 2.133 1.768 4.368 0.284 0.278 0.649 0.310 0.143

AVERAGE 3.260 2.376 8.180 0.536 0.398 1.115 0.664 2.257

HIGH 6.342 5.274 20.045 1.400 1.172 2.115 1.644 5.303

Franklin LOW 2.346 2.414 7.632 0.733 0.686 0.546 0.871 0.551

AVERAGE 2.774 2.688 9.583 0.927 0.846 0.717 1.163 3.000

HIGH 2.931 2.995 10.424 1.012 1.198 1.324 1.238 4.167

Gadsen LOW 0.547 0.570 1.481 0.141 0.123 0.000 0.000 0.214

AVERAGE 0.735 0.730 1.943 0.171 0.155 0.000 0.000 0.246

HIGH 0.872 0.855 2.858 0.201 0.171 0.000 0.000 0.310

Gilchrist LOW 1.026 0.984 2.799 0.233 0.216 0.000 0.314 0.379

AVERAGE 1.075 1.053 3.072 0.253 0.231 0.000 0.314 0.379

HIGH 1.096 1.086 3.205 0.257 0.240 0.000 0.314 0.379

Glades LOW 6.277 5.791 15.211 1.068 0.855 0.000 0.000 0.000

AVERAGE 6.278 5.798 15.319 1.068 0.855 0.000 0.000 0.000

HIGH 6.293 6.106 18.917 1.068 0.855 0.000 0.000 0.000

grullont
Typewritten Text
Appendix D

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text
402



Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Gulf LOW 1.410 1.433 4.959 0.352 0.300 0.652 0.512 1.621

AVERAGE 1.961 1.995 6.348 0.550 0.511 0.652 0.719 1.621

HIGH 2.071 2.212 9.084 0.612 0.596 0.652 0.769 1.621

Hamilton LOW 0.527 0.522 1.268 0.117 0.109 0.000 0.126 0.144

AVERAGE 0.563 0.550 1.311 0.125 0.119 0.000 0.126 0.157

HIGH 0.595 0.572 1.334 0.127 0.120 0.000 0.126 0.162

Hardee LOW 4.042 3.884 8.245 0.492 0.453 0.000 0.000 1.791

AVERAGE 4.139 3.973 8.469 0.520 0.480 0.000 0.000 1.807

HIGH 4.392 4.269 9.075 0.707 0.620 0.000 0.000 2.113

Hendry LOW 5.185 3.693 10.930 0.659 0.582 1.202 1.008 3.987

AVERAGE 5.924 5.648 15.388 0.863 0.998 1.777 1.815 5.908

HIGH 7.550 7.022 17.756 1.396 1.221 2.121 1.945 6.093

Hernando LOW 2.271 1.826 1.516 0.333 0.279 0.615 0.666 0.575

AVERAGE 3.066 2.726 7.184 0.359 0.331 0.666 0.728 0.730

HIGH 4.121 3.634 9.385 0.442 0.471 0.749 0.809 3.045

Highlands LOW 3.809 3.597 8.056 0.424 0.463 0.792 0.870 1.420

AVERAGE 4.325 4.135 10.420 0.522 0.511 0.947 0.946 1.716

HIGH 5.833 5.319 16.747 0.648 0.788 1.146 1.152 4.454

Hillsborough LOW 1.434 1.439 1.470 0.328 0.261 0.444 0.446 0.202

AVERAGE 3.219 3.094 9.374 0.410 0.401 0.694 0.711 1.084

HIGH 4.931 5.013 15.768 0.722 0.737 1.188 1.686 1.986
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Holmes LOW 1.267 1.120 4.045 0.318 0.298 0.350 0.000 0.306

AVERAGE 1.433 1.390 4.127 0.339 0.298 0.350 0.000 0.306

HIGH 1.551 1.468 6.016 0.411 0.298 0.350 0.000 0.306

Indian River LOW 4.192 2.848 11.239 0.644 0.492 1.090 1.010 3.283

AVERAGE 7.623 5.839 16.626 2.118 1.603 2.826 3.125 10.745

HIGH 12.987 10.173 38.249 3.660 3.072 5.624 4.567 15.927

Jackson LOW 0.914 0.899 2.374 0.199 0.170 0.284 0.275 0.212

AVERAGE 1.100 1.062 3.154 0.247 0.228 0.284 0.296 0.516

HIGH 1.416 1.395 4.553 0.333 0.326 0.284 0.333 0.652

Jefferson LOW 0.588 0.572 1.555 0.126 0.122 0.000 0.000 0.260

AVERAGE 0.595 0.583 1.578 0.135 0.122 0.000 0.000 0.260

HIGH 0.701 0.650 2.509 0.158 0.136 0.000 0.000 0.260

Lafayette LOW 0.668 0.620 2.173 0.189 0.170 0.000 0.000 0.000

AVERAGE 0.811 0.801 2.174 0.189 0.170 0.000 0.000 0.000

HIGH 0.815 0.803 2.227 0.189 0.170 0.000 0.000 0.000

Lake LOW 2.012 1.389 1.502 0.236 0.268 0.322 0.360 0.190

AVERAGE 2.835 2.545 7.190 0.349 0.333 0.727 0.675 0.530

HIGH 3.851 3.357 10.215 0.516 0.499 0.800 0.822 1.128

Lee LOW 2.120 3.031 8.960 0.540 0.397 0.650 0.699 0.291

AVERAGE 6.840 4.531 18.490 1.119 0.692 1.788 1.350 3.661

HIGH 10.571 9.740 34.823 2.470 2.147 4.204 3.839 17.366
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Leon LOW 0.693 0.666 0.746 0.136 0.120 0.172 0.159 0.062

AVERAGE 0.749 0.733 2.373 0.163 0.152 0.211 0.207 0.189

HIGH 1.028 0.961 4.632 0.202 0.187 0.313 0.245 0.390

Levy LOW 1.071 1.049 3.361 0.232 0.221 0.305 0.811 0.312

AVERAGE 1.578 1.331 4.184 0.448 0.288 1.021 0.811 2.645

HIGH 3.032 3.005 10.446 1.090 0.414 1.032 0.811 3.049

Liberty LOW 0.979 0.940 2.605 0.219 0.209 0.000 0.000 0.000

AVERAGE 0.980 0.957 2.662 0.225 0.210 0.000 0.000 0.000

HIGH 1.008 0.991 3.203 0.226 0.213 0.000 0.000 0.000

Madison LOW 0.479 0.471 1.171 0.121 0.102 0.000 0.000 0.237

AVERAGE 0.581 0.569 1.431 0.134 0.120 0.000 0.000 0.237

HIGH 0.625 0.604 1.630 0.145 0.125 0.000 0.000 0.237

Manatee LOW 3.308 2.539 1.783 0.431 0.312 0.493 0.571 0.354

AVERAGE 4.528 3.462 13.214 0.731 0.638 1.638 1.497 5.411

HIGH 8.665 7.791 34.902 2.064 1.824 3.262 2.654 10.836

Marion LOW 2.280 1.894 4.129 0.255 0.230 0.422 0.425 0.105

AVERAGE 2.774 2.331 5.378 0.302 0.285 0.578 0.534 0.530

HIGH 3.215 3.026 6.541 0.417 0.385 0.778 0.787 1.533

Martin LOW 5.003 4.397 17.239 0.694 0.694 1.452 1.785 4.263

AVERAGE 9.224 7.079 31.896 2.728 1.944 3.956 3.031 11.075

HIGH 12.993 11.225 49.734 4.179 3.882 5.000 4.026 16.576
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Miami‐Dade LOW 3.480 2.526 3.201 0.573 0.521 0.770 0.709 0.527

AVERAGE 7.960 7.199 22.749 2.902 2.302 3.707 3.678 14.316

HIGH 25.052 16.092 64.285 7.732 5.955 7.894 9.238 30.047

Monroe LOW 8.893 6.458 10.924 3.433 2.229 3.957 3.393 24.019

AVERAGE 11.441 11.483 60.751 4.144 3.342 4.637 4.462 29.086

HIGH 17.663 15.285 87.144 6.233 8.206 10.025 6.511 38.240

Nassau LOW 0.515 0.505 1.267 0.118 0.099 0.121 0.167 0.312

AVERAGE 1.017 0.926 2.167 0.285 0.261 0.428 0.379 1.453

HIGH 1.201 1.188 7.280 0.312 0.293 0.429 0.380 2.664

Okaloosa LOW 1.588 1.577 5.740 0.409 0.368 0.390 0.913 0.291

AVERAGE 3.514 3.437 9.365 1.170 1.081 2.210 1.846 8.153

HIGH 5.687 5.665 24.405 2.097 2.799 2.973 2.254 10.953

Okeechobee LOW 5.016 4.812 12.677 0.693 0.714 1.501 0.737 1.886

AVERAGE 5.685 5.157 16.120 0.807 0.755 1.501 1.409 3.310

HIGH 6.142 5.345 17.010 0.914 0.779 1.501 1.420 3.432

Orange LOW 1.396 1.421 1.612 0.254 0.262 0.350 0.379 0.148

AVERAGE 2.971 2.881 6.923 0.358 0.348 0.619 0.609 0.493

HIGH 4.342 4.040 11.258 0.456 0.434 0.759 0.884 1.774

Osceola LOW 2.074 2.162 7.296 0.309 0.306 0.504 0.443 0.194

AVERAGE 2.803 2.922 8.385 0.361 0.367 0.639 0.554 0.523

HIGH 4.870 4.025 11.793 0.846 0.447 0.771 0.845 1.181
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Palm Beach LOW 4.664 4.713 3.100 1.057 0.886 0.862 1.071 0.675

AVERAGE 9.693 7.604 27.718 4.632 2.524 3.709 3.356 12.572

HIGH 20.616 15.510 72.988 7.132 5.461 8.535 7.175 26.051

Pasco LOW 1.645 1.574 2.260 0.300 0.273 0.416 0.365 0.449

AVERAGE 2.776 2.742 7.881 0.389 0.375 0.738 0.714 1.215

HIGH 3.749 3.782 11.564 0.565 0.464 0.838 0.834 1.763

Pinellas LOW 2.165 2.071 1.550 0.334 0.325 0.623 0.559 0.562

AVERAGE 3.691 3.542 11.107 0.507 0.489 1.007 0.995 3.590

HIGH 5.905 6.173 19.780 1.312 1.069 1.801 1.970 7.468

Polk LOW 1.699 1.638 1.831 0.332 0.291 0.413 0.407 0.173

AVERAGE 3.563 3.220 9.047 0.445 0.423 0.756 0.759 1.184

HIGH 5.428 4.703 13.179 0.671 0.639 0.978 1.167 2.223

Putnam LOW 1.088 1.032 1.161 0.240 0.225 0.393 0.249 0.599

AVERAGE 1.270 1.223 4.093 0.286 0.265 0.438 0.367 0.792

HIGH 1.546 1.476 5.503 0.350 0.341 0.469 0.464 0.996

St. Johns LOW 0.835 0.865 2.630 0.186 0.172 0.224 0.245 0.087

AVERAGE 1.433 1.559 5.026 0.465 0.409 0.720 0.718 3.487

HIGH 2.687 2.336 12.524 0.826 0.687 1.121 1.013 5.406

St. Lucie LOW 4.769 2.441 5.258 0.635 0.500 0.553 0.777 0.294

AVERAGE 6.379 4.190 22.474 1.316 1.002 3.074 3.422 9.280

HIGH 14.642 12.825 40.023 5.530 3.881 6.941 5.235 14.692
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Santa Rosa LOW 1.780 1.738 7.162 0.458 0.424 0.436 0.547 1.284

AVERAGE 3.248 3.204 11.548 1.187 1.208 3.026 1.795 9.060

HIGH 6.507 6.032 33.718 2.624 2.059 3.485 1.987 19.486

Sarasota LOW 1.688 1.722 10.665 0.444 0.378 0.632 0.502 0.220

AVERAGE 4.857 4.046 16.507 0.746 0.646 1.272 1.186 3.806

HIGH 7.219 6.159 23.416 1.457 1.163 2.079 1.848 6.550

Seminole LOW 2.681 2.255 5.473 0.251 0.274 0.372 0.456 0.169

AVERAGE 3.142 2.933 7.142 0.347 0.339 0.641 0.615 0.573

HIGH 4.068 3.593 8.934 0.431 0.423 0.798 0.680 0.776

Sumter LOW 1.570 1.501 4.983 0.296 0.316 0.596 0.420 0.135

AVERAGE 1.776 1.901 7.306 0.328 0.341 0.761 0.515 0.326

HIGH 3.649 3.447 8.050 0.413 0.404 0.784 0.720 1.208

Suwanee LOW 0.626 0.612 1.566 0.141 0.132 0.191 0.000 0.179

AVERAGE 0.688 0.672 1.759 0.145 0.137 0.191 0.000 0.239

HIGH 0.876 0.854 2.257 0.202 0.197 0.191 0.000 0.251

Taylor LOW 0.694 0.650 1.512 0.151 0.164 0.176 0.291 0.306

AVERAGE 0.817 0.771 2.429 0.178 0.164 0.238 0.291 0.339

HIGH 1.083 1.098 3.658 0.315 0.165 0.303 0.291 0.435

Union LOW 0.851 0.828 0.795 0.191 0.136 0.198 0.239 0.287

AVERAGE 0.860 0.837 2.348 0.204 0.184 0.198 0.239 0.287

HIGH 0.977 0.958 2.961 0.232 0.216 0.198 0.239 0.287
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 for 0% Deductible

Volusia LOW 1.203 1.590 1.419 0.304 0.282 0.465 0.338 0.178

AVERAGE 4.244 3.629 8.907 0.604 0.663 1.446 1.861 4.749

HIGH 8.436 8.187 28.180 1.727 1.647 2.749 2.526 6.714

Wakulla LOW 0.790 0.796 2.540 0.174 0.178 0.280 0.288 0.077

AVERAGE 0.985 0.950 2.866 0.223 0.252 0.480 0.609 0.946

HIGH 1.874 1.934 8.450 0.606 0.626 0.693 0.653 2.018

Walton LOW 1.668 1.596 4.715 0.397 0.373 0.591 0.385 0.318

AVERAGE 3.283 2.854 8.024 1.156 1.209 2.238 1.641 6.672

HIGH 4.746 4.005 32.062 1.818 1.932 2.747 1.819 7.978

Washington LOW 1.387 1.369 4.034 0.322 0.309 0.494 0.000 0.566

AVERAGE 1.410 1.393 4.215 0.340 0.316 0.508 0.000 0.566

HIGH 1.526 1.499 4.962 0.365 0.375 0.534 0.000 0.566

Statewide LOW 0.479 0.471 0.675 0.117 0.099 0.121 0.126 0.040

AVERAGE 3.272 4.537 10.602 1.009 1.140 1.543 2.183 8.351

HIGH 25.052 16.092 87.144 7.732 8.206 10.025 9.238 38.240
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Alachua LOW 0.141 0.209 0.216 0.043 0.034 0.034 0.036 0.006

AVERAGE 0.245 0.252 2.126 0.052 0.048 0.057 0.052 0.092

HIGH 0.390 0.417 4.819 0.103 0.067 0.088 0.092 0.211

Baker LOW 0.124 0.120 0.757 0.028 0.023 0.023 0.030 0.069

AVERAGE 0.149 0.145 1.115 0.035 0.033 0.023 0.030 0.069

HIGH 0.169 0.150 1.290 0.037 0.039 0.023 0.030 0.069

Bay LOW 0.408 0.414 3.037 0.101 0.076 0.126 0.102 0.007

AVERAGE 1.305 1.040 7.170 0.392 0.345 1.241 0.631 4.179

HIGH 2.637 2.557 18.600 1.369 0.916 1.820 0.786 5.943

Bradford LOW 0.180 0.171 1.235 0.041 0.034 0.079 0.043 0.062

AVERAGE 0.218 0.206 1.565 0.048 0.040 0.079 0.043 0.065

HIGH 0.276 0.271 2.305 0.073 0.060 0.079 0.043 0.071

Brevard LOW 1.769 0.520 5.917 0.053 0.087 0.067 0.135 0.016

AVERAGE 3.174 2.801 14.081 0.437 0.491 0.837 1.191 4.440

HIGH 10.109 7.918 32.122 2.894 2.723 3.895 3.211 10.439

Broward LOW 1.031 0.641 1.086 0.145 0.242 0.130 0.139 0.079

AVERAGE 4.992 3.991 25.830 1.958 1.131 1.830 1.660 10.213

HIGH 13.358 12.060 53.119 4.177 3.836 6.547 5.760 21.291

Calhoun LOW 0.286 0.261 1.605 0.062 0.046 0.000 0.000 0.002

AVERAGE 0.313 0.292 2.154 0.067 0.050 0.000 0.000 0.002

HIGH 0.355 0.361 2.471 0.082 0.054 0.000 0.000 0.002

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Charlotte LOW 1.865 1.016 6.771 0.145 0.111 0.084 0.231 0.760

AVERAGE 3.162 2.509 10.311 0.416 0.249 0.717 0.318 1.650

HIGH 4.515 4.209 28.726 0.956 0.635 1.254 0.767 5.062

Citrus LOW 1.003 1.084 3.333 0.076 0.059 0.050 0.078 0.005

AVERAGE 1.643 1.313 4.509 0.116 0.091 0.149 0.142 0.290

HIGH 2.258 1.697 6.386 0.158 0.160 0.176 0.207 0.384

Clay LOW 0.184 0.177 1.157 0.046 0.042 0.035 0.029 0.007

AVERAGE 0.214 0.223 1.769 0.055 0.052 0.052 0.045 0.154

HIGH 0.350 0.292 3.528 0.067 0.071 0.078 0.071 0.238

Collier LOW 2.426 0.642 4.581 0.168 0.121 0.173 0.165 0.156

AVERAGE 3.843 3.000 18.170 0.546 0.375 0.641 0.609 2.671

HIGH 7.316 5.609 43.304 1.589 1.032 1.498 1.745 7.701

Columbia LOW 0.156 0.142 1.027 0.036 0.031 0.038 0.035 0.000

AVERAGE 0.176 0.165 1.311 0.038 0.034 0.045 0.037 0.098

HIGH 0.189 0.176 1.487 0.046 0.042 0.046 0.039 0.109

De Soto LOW 2.176 2.134 4.156 0.124 0.067 0.261 0.071 0.501

AVERAGE 2.589 2.391 7.274 0.218 0.215 0.268 0.209 0.681

HIGH 2.994 2.497 9.605 0.265 0.301 0.280 0.213 0.695

Dixie LOW 0.278 0.238 2.099 0.069 0.041 0.044 0.046 0.002

AVERAGE 0.369 0.270 2.352 0.085 0.052 0.191 0.165 0.078

HIGH 1.000 0.823 10.138 0.256 0.053 0.276 0.213 0.100
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Duval LOW 0.096 0.105 0.143 0.025 0.019 0.022 0.020 0.001

AVERAGE 0.268 0.235 1.756 0.066 0.054 0.068 0.076 0.698

HIGH 1.248 0.853 5.923 0.412 0.264 0.323 0.192 2.651

Escambia LOW 0.593 0.592 0.803 0.117 0.130 0.122 0.064 0.031

AVERAGE 1.275 1.209 9.008 0.375 0.356 0.718 0.698 2.841

HIGH 2.833 2.099 19.082 1.136 0.768 1.460 2.195 9.286

Flagler LOW 0.973 0.685 3.185 0.075 0.075 0.168 0.043 0.009

AVERAGE 1.848 1.135 6.696 0.275 0.160 0.522 0.235 1.655

HIGH 4.368 3.408 17.939 0.999 0.780 1.343 0.924 4.252

Franklin LOW 1.009 1.022 5.909 0.388 0.350 0.144 0.391 0.134

AVERAGE 1.281 1.229 7.811 0.524 0.482 0.268 0.602 2.151

HIGH 1.393 1.447 8.542 0.598 0.772 0.706 0.647 3.063

Gadsen LOW 0.078 0.094 0.866 0.031 0.025 0.000 0.000 0.027

AVERAGE 0.165 0.159 1.215 0.038 0.033 0.000 0.000 0.038

HIGH 0.212 0.200 1.952 0.045 0.037 0.000 0.000 0.060

Gilchrist LOW 0.272 0.243 1.870 0.061 0.056 0.000 0.059 0.135

AVERAGE 0.282 0.269 2.085 0.066 0.059 0.000 0.059 0.135

HIGH 0.286 0.281 2.190 0.067 0.060 0.000 0.059 0.135

Glades LOW 3.722 3.310 12.654 0.537 0.371 0.000 0.000 0.000

AVERAGE 3.722 3.318 12.758 0.537 0.371 0.000 0.000 0.000

HIGH 3.734 3.657 16.209 0.537 0.371 0.000 0.000 0.000
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Gulf LOW 0.375 0.395 3.610 0.096 0.063 0.197 0.094 0.958

AVERAGE 0.654 0.706 4.843 0.219 0.200 0.197 0.244 0.958

HIGH 0.710 0.827 7.275 0.258 0.256 0.197 0.280 0.958

Hamilton LOW 0.108 0.101 0.747 0.026 0.021 0.000 0.016 0.031

AVERAGE 0.125 0.116 0.774 0.028 0.026 0.000 0.016 0.041

HIGH 0.140 0.126 0.788 0.028 0.026 0.000 0.016 0.045

Hardee LOW 2.240 2.109 6.437 0.156 0.133 0.000 0.000 0.817

AVERAGE 2.301 2.166 6.623 0.175 0.150 0.000 0.000 0.828

HIGH 2.464 2.332 7.187 0.306 0.256 0.000 0.000 1.033

Hendry LOW 2.898 1.740 8.707 0.238 0.185 0.317 0.150 2.530

AVERAGE 3.520 3.273 12.880 0.403 0.505 0.753 0.782 4.201

HIGH 4.818 4.349 15.093 0.833 0.678 1.014 0.881 4.362

Hernando LOW 0.999 0.642 0.405 0.096 0.057 0.127 0.145 0.200

AVERAGE 1.642 1.381 5.649 0.110 0.096 0.147 0.174 0.281

HIGH 2.514 2.007 7.650 0.156 0.185 0.184 0.212 2.012

Highlands LOW 1.900 1.700 6.184 0.109 0.135 0.138 0.163 0.614

AVERAGE 2.367 2.210 8.362 0.162 0.161 0.211 0.215 0.774

HIGH 3.417 2.973 14.163 0.235 0.328 0.310 0.331 2.871

Hillsborough LOW 0.346 0.330 0.396 0.087 0.051 0.066 0.067 0.011

AVERAGE 1.724 1.613 7.667 0.136 0.130 0.162 0.168 0.491

HIGH 3.190 3.167 13.749 0.361 0.365 0.443 0.862 1.028
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Holmes LOW 0.392 0.275 2.855 0.084 0.079 0.057 0.000 0.053

AVERAGE 0.443 0.415 2.921 0.098 0.079 0.057 0.000 0.053

HIGH 0.502 0.442 4.694 0.143 0.079 0.057 0.000 0.053

Indian River LOW 2.318 1.196 9.227 0.273 0.165 0.323 0.337 2.213

AVERAGE 5.191 3.640 14.312 1.571 1.102 1.815 2.043 8.899

HIGH 9.944 7.331 35.110 2.966 2.391 4.295 3.285 13.653

Jackson LOW 0.227 0.196 1.518 0.041 0.033 0.044 0.041 0.027

AVERAGE 0.296 0.275 2.134 0.061 0.055 0.044 0.047 0.161

HIGH 0.447 0.438 3.333 0.098 0.103 0.044 0.061 0.222

Jefferson LOW 0.128 0.116 0.970 0.025 0.026 0.000 0.000 0.081

AVERAGE 0.132 0.125 0.990 0.031 0.026 0.000 0.000 0.081

HIGH 0.171 0.148 1.764 0.038 0.027 0.000 0.000 0.081

Lafayette LOW 0.183 0.144 1.415 0.049 0.042 0.000 0.000 0.000

AVERAGE 0.203 0.196 1.417 0.049 0.042 0.000 0.000 0.000

HIGH 0.203 0.196 1.566 0.049 0.042 0.000 0.000 0.000

Lake LOW 0.763 0.286 0.381 0.045 0.058 0.044 0.049 0.012

AVERAGE 1.409 1.160 5.588 0.094 0.087 0.151 0.136 0.151

HIGH 2.162 1.752 8.390 0.203 0.187 0.178 0.213 0.436

Lee LOW 0.502 1.182 6.823 0.155 0.078 0.100 0.104 0.018

AVERAGE 4.346 2.395 15.928 0.627 0.272 0.825 0.484 2.374

HIGH 7.514 6.844 31.773 1.781 1.505 2.796 2.442 14.563
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Leon LOW 0.146 0.128 0.158 0.028 0.021 0.024 0.021 0.007

AVERAGE 0.176 0.164 1.587 0.037 0.034 0.034 0.034 0.043

HIGH 0.283 0.259 3.543 0.053 0.047 0.077 0.053 0.166

Levy LOW 0.269 0.255 2.330 0.044 0.046 0.044 0.321 0.064

AVERAGE 0.545 0.370 2.971 0.195 0.075 0.495 0.321 1.849

HIGH 1.534 1.509 8.633 0.674 0.150 0.502 0.321 2.184

Liberty LOW 0.230 0.207 1.666 0.048 0.042 0.000 0.000 0.000

AVERAGE 0.231 0.216 1.719 0.052 0.044 0.000 0.000 0.000

HIGH 0.244 0.234 2.193 0.052 0.052 0.000 0.000 0.000

Madison LOW 0.102 0.097 0.695 0.024 0.022 0.000 0.000 0.062

AVERAGE 0.136 0.127 0.877 0.032 0.027 0.000 0.000 0.062

HIGH 0.150 0.136 1.049 0.036 0.028 0.000 0.000 0.062

Manatee LOW 1.753 1.063 0.492 0.123 0.063 0.077 0.117 0.072

AVERAGE 2.711 1.833 11.319 0.372 0.296 0.841 0.703 4.059

HIGH 6.161 5.336 32.094 1.517 1.284 2.168 1.611 8.837

Marion LOW 1.102 0.760 2.921 0.055 0.043 0.069 0.055 0.002

AVERAGE 1.453 1.105 3.997 0.081 0.074 0.113 0.101 0.165

HIGH 1.804 1.621 5.023 0.140 0.132 0.192 0.194 0.764

Martin LOW 2.789 2.174 14.707 0.279 0.283 0.521 0.809 2.868

AVERAGE 6.427 4.523 28.913 2.097 1.364 2.764 1.889 9.101

HIGH 9.907 8.216 46.201 3.406 3.121 3.694 2.749 14.269
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Miami‐Dade LOW 1.360 0.636 1.124 0.144 0.114 0.134 0.117 0.064

AVERAGE 5.183 4.487 19.977 2.219 1.647 2.540 2.439 11.954

HIGH 20.836 12.372 60.244 6.758 4.958 6.356 7.322 26.528

Monroe LOW 6.179 3.809 8.176 2.710 1.603 2.683 2.107 21.302

AVERAGE 8.424 8.265 57.148 3.382 2.573 3.354 3.098 25.975

HIGH 14.039 11.795 83.229 5.377 7.173 8.246 4.969 34.797

Nassau LOW 0.106 0.100 0.755 0.027 0.021 0.016 0.022 0.127

AVERAGE 0.301 0.258 1.465 0.107 0.095 0.145 0.116 0.979

HIGH 0.396 0.385 6.031 0.121 0.112 0.145 0.116 1.940

Okaloosa LOW 0.455 0.442 4.344 0.121 0.112 0.058 0.362 0.028

AVERAGE 1.871 1.788 7.684 0.713 0.634 1.441 1.112 6.485

HIGH 3.659 3.686 21.879 1.501 2.147 2.099 1.464 9.058

Okeechobee LOW 2.795 2.626 10.372 0.272 0.285 0.519 0.139 0.871

AVERAGE 3.301 2.861 13.577 0.351 0.310 0.519 0.450 1.873

HIGH 3.647 2.988 14.404 0.426 0.324 0.519 0.455 1.958

Orange LOW 0.302 0.293 0.419 0.048 0.052 0.048 0.052 0.007

AVERAGE 1.478 1.411 5.309 0.094 0.091 0.110 0.108 0.123

HIGH 2.610 2.382 9.269 0.156 0.151 0.153 0.238 0.921

Osceola LOW 0.786 0.693 5.559 0.068 0.069 0.073 0.062 0.012

AVERAGE 1.332 1.417 6.583 0.095 0.101 0.124 0.099 0.154

HIGH 2.822 2.265 9.639 0.408 0.144 0.173 0.197 0.387
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Palm Beach LOW 2.191 2.332 1.024 0.561 0.421 0.208 0.299 0.160

AVERAGE 6.702 4.828 24.652 3.821 1.847 2.472 2.104 10.347

HIGH 16.547 11.732 68.593 6.132 4.498 6.850 5.469 23.018

Pasco LOW 0.458 0.405 1.030 0.065 0.052 0.061 0.052 0.165

AVERAGE 1.360 1.334 6.262 0.121 0.115 0.180 0.172 0.580

HIGH 2.100 2.183 9.736 0.242 0.177 0.237 0.222 0.982

Pinellas LOW 0.893 0.820 0.399 0.090 0.080 0.123 0.080 0.182

AVERAGE 2.071 1.940 9.339 0.205 0.190 0.367 0.340 2.521

HIGH 3.776 4.001 17.493 0.850 0.617 0.942 1.040 5.886

Polk LOW 0.401 0.361 0.510 0.078 0.062 0.057 0.059 0.006

AVERAGE 1.887 1.614 7.228 0.137 0.126 0.164 0.160 0.520

HIGH 3.437 2.786 11.033 0.297 0.271 0.249 0.366 1.237

Putnam LOW 0.283 0.247 0.275 0.052 0.048 0.080 0.034 0.186

AVERAGE 0.370 0.340 2.937 0.079 0.071 0.106 0.078 0.329

HIGH 0.506 0.456 4.168 0.108 0.113 0.124 0.125 0.477

St. Johns LOW 0.134 0.155 1.663 0.039 0.036 0.033 0.036 0.004

AVERAGE 0.519 0.573 3.856 0.226 0.181 0.336 0.327 2.704

HIGH 1.372 1.062 10.792 0.491 0.376 0.626 0.537 4.353

St. Lucie LOW 2.600 0.719 3.411 0.232 0.146 0.081 0.183 0.022

AVERAGE 3.948 2.150 19.806 0.827 0.565 2.007 2.301 7.595

HIGH 11.343 9.587 36.708 4.734 3.124 5.511 3.891 12.539
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Santa Rosa LOW 0.567 0.539 5.600 0.145 0.101 0.066 0.096 0.573

AVERAGE 1.651 1.586 9.667 0.736 0.748 2.149 1.063 7.338

HIGH 4.375 3.917 30.885 1.983 1.458 2.554 1.222 16.851

Sarasota LOW 0.395 0.426 8.710 0.138 0.090 0.137 0.080 0.012

AVERAGE 2.909 2.225 14.316 0.369 0.286 0.514 0.444 2.580

HIGH 4.817 3.920 20.801 0.975 0.706 1.156 0.935 4.938

Seminole LOW 1.283 0.953 4.007 0.047 0.057 0.052 0.066 0.015

AVERAGE 1.651 1.485 5.513 0.092 0.090 0.121 0.114 0.157

HIGH 2.436 2.030 7.173 0.148 0.146 0.183 0.134 0.223

Sumter LOW 0.442 0.392 3.576 0.068 0.075 0.083 0.058 0.004

AVERAGE 0.597 0.692 5.680 0.085 0.092 0.176 0.088 0.094

HIGH 2.039 1.857 6.382 0.126 0.123 0.183 0.152 0.574

Suwanee LOW 0.140 0.131 0.960 0.028 0.029 0.029 0.000 0.037

AVERAGE 0.157 0.148 1.094 0.033 0.032 0.029 0.000 0.065

HIGH 0.217 0.202 1.443 0.053 0.054 0.029 0.000 0.085

Taylor LOW 0.178 0.145 0.909 0.038 0.042 0.024 0.056 0.113

AVERAGE 0.215 0.196 1.661 0.048 0.043 0.040 0.056 0.132

HIGH 0.320 0.315 2.640 0.112 0.044 0.056 0.056 0.185

Union LOW 0.194 0.171 0.167 0.043 0.024 0.027 0.035 0.058

AVERAGE 0.198 0.183 1.501 0.048 0.043 0.027 0.035 0.058

HIGH 0.248 0.236 2.024 0.060 0.059 0.027 0.035 0.058
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Modeling Organization:  Florida International University

Model Name & Version Number:  Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

County Loss Costs Frame Owners

Masonry 

Owners

Mobile 

Homes Frame Renters Masonry Renters

Frame Condo 

Unit

Masrony Condo 

Unit

Commercial 

Residential

Form A‐4 Output Ranges
LOSS COSTS PER $1000 with Specified Deductibles

Volusia LOW 0.254 0.383 0.356 0.081 0.075 0.082 0.046 0.010

AVERAGE 2.602 2.104 7.281 0.298 0.359 0.721 1.055 3.620

HIGH 6.060 5.814 25.588 1.233 1.184 1.746 1.557 5.282

Wakulla LOW 0.152 0.157 1.685 0.037 0.041 0.050 0.068 0.012

AVERAGE 0.250 0.235 1.968 0.065 0.087 0.152 0.217 0.558

HIGH 0.707 0.759 6.888 0.296 0.327 0.261 0.237 1.232

Walton LOW 0.547 0.512 3.365 0.104 0.103 0.154 0.056 0.054

AVERAGE 1.609 1.247 6.386 0.700 0.755 1.466 0.949 5.259

HIGH 2.779 2.180 29.268 1.262 1.364 1.912 1.095 6.388

Washington LOW 0.401 0.391 2.822 0.070 0.086 0.092 0.000 0.180

AVERAGE 0.410 0.400 2.973 0.096 0.088 0.109 0.000 0.180

HIGH 0.474 0.442 3.598 0.105 0.131 0.140 0.000 0.180

Statewide LOW 0.078 0.094 0.143 0.024 0.019 0.016 0.016 0.000

AVERAGE 1.814 2.596 8.821 0.662 0.712 0.836 1.220 6.695

HIGH 20.836 12.372 83.229 6.758 7.173 8.246 7.322 34.797
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Region

Frame 

Owners

Masonry 

Owners

Mobile 

Homes

Frame 

Renters

Masonry 

Renters

Frame Condo 

Unit

Masonry 

Condo Unit

Commercial 

Residential

Coastal ‐7.08% ‐3.47% ‐3.33% ‐5.47% ‐6.75% ‐9.90% ‐7.18% ‐19.10%

Inland ‐7.97% ‐6.79% ‐3.88% ‐10.15% ‐9.77% ‐9.62% ‐8.09% ‐48.20%

North ‐11.69% ‐9.81% ‐8.76% ‐14.78% ‐13.15% ‐18.03% ‐16.04% ‐38.92%

Central ‐7.40% ‐5.31% ‐4.75% ‐11.40% ‐9.49% ‐10.96% ‐8.05% ‐32.88%

South ‐3.78% ‐2.93% ‐0.44% ‐1.20% ‐6.13% ‐6.33% ‐6.73% ‐15.92%

Statewide ‐7.25% ‐3.92% ‐3.49% ‐5.92% ‐6.95% ‐9.88% ‐7.20% ‐19.33%

Region

Frame 

Owners

Masonry 

Owners

Mobile 

Homes

Frame 

Renters

Masonry 

Renters

Frame Condo 

Unit

Masonry 

Condo Unit

Commercial 

Residential

Coastal ‐8.98% ‐5.65% ‐3.42% ‐5.37% ‐8.39% ‐12.88% ‐10.58% ‐18.61%

Inland ‐11.68% ‐9.74% ‐4.32% ‐17.94% ‐17.90% ‐18.91% ‐16.66% ‐47.35%

North ‐17.93% ‐14.03% ‐9.74% ‐20.12% ‐16.91% ‐22.90% ‐21.10% ‐41.46%

Central ‐9.33% ‐6.32% ‐5.14% ‐16.33% ‐13.08% ‐15.88% ‐10.03% ‐32.59%

South ‐5.33% ‐5.89% ‐0.44% ‐0.95% ‐7.84% ‐8.27% ‐10.37% ‐15.30%

Statewide ‐9.41% ‐6.13% ‐3.67% ‐5.91% ‐8.70% ‐13.03% ‐10.62% ‐18.70%

Form A‐5 Percentage Change in Output Ranges

Percentage Change in $0 Deductible Output Ranges

Percentage Change in Specified Deductible Output Ranges
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

1 BAY 4.313 3.650 2.988 2.426 1.707 1.378 1.000 0.846 0.693 0.562 0.396 0.319

2 BREVARD 4.902 4.306 3.712 2.968 1.461 0.753 1.000 0.878 0.757 0.606 0.298 0.154

3 BREVARD 4.639 4.052 3.468 2.739 1.270 0.603 1.000 0.874 0.748 0.590 0.274 0.130

4 BROWARD 9.456 8.606 7.759 6.601 4.103 2.580 1.000 0.910 0.821 0.698 0.434 0.273

5 BROWARD 15.939 14.920 13.903 12.454 9.235 6.929 1.000 0.936 0.872 0.781 0.579 0.435

6 CITRUS 3.526 3.057 2.589 2.023 0.886 0.365 1.000 0.867 0.734 0.574 0.251 0.104

7 CLAY 1.004 0.720 0.438 0.269 0.120 0.088 1.000 0.718 0.437 0.268 0.119 0.088

8 COLLIER 6.317 5.551 4.787 3.849 1.951 1.035 1.000 0.879 0.758 0.609 0.309 0.164

9 COLUMBIA 0.826 0.585 0.345 0.203 0.074 0.055 1.000 0.708 0.418 0.246 0.089 0.066

10 DIXIE 3.019 2.500 1.983 1.570 1.078 0.869 1.000 0.828 0.657 0.520 0.357 0.288

11 DUVAL 2.358 1.947 1.537 1.216 0.791 0.664 1.000 0.825 0.652 0.516 0.336 0.281

12 FRANKLIN 5.930 5.185 4.441 3.797 2.940 2.451 1.000 0.874 0.749 0.640 0.496 0.413

13 GLADES 5.556 4.836 4.118 3.269 1.570 0.754 1.000 0.870 0.741 0.588 0.283 0.136

14 HAMILTON 0.713 0.508 0.304 0.181 0.069 0.051 1.000 0.712 0.426 0.254 0.096 0.071

15 HILLSBOROUGH 4.489 3.927 3.367 2.688 1.320 0.676 1.000 0.875 0.750 0.599 0.294 0.151

16 HERNANDO 3.828 3.332 2.837 2.214 0.963 0.415 1.000 0.870 0.741 0.578 0.252 0.108

17 HOLMES 1.426 1.057 0.691 0.439 0.175 0.126 1.000 0.742 0.484 0.308 0.123 0.088

18 INDIAN RIVER 11.415 10.549 9.684 8.605 6.364 4.920 1.000 0.924 0.848 0.754 0.557 0.431

19 JACKSON 1.149 0.833 0.519 0.315 0.116 0.084 1.000 0.725 0.452 0.274 0.101 0.074

20 LEE 5.795 5.053 4.313 3.479 1.805 0.921 1.000 0.872 0.744 0.600 0.311 0.159

21 LEON 1.109 0.813 0.518 0.326 0.134 0.098 1.000 0.733 0.467 0.294 0.121 0.089

22 MARION 1.750 1.334 0.920 0.650 0.256 0.113 1.000 0.762 0.526 0.371 0.146 0.064

23 MARTIN 6.188 5.485 4.783 3.837 1.878 0.951 1.000 0.886 0.773 0.620 0.303 0.154

24 MARTIN 14.051 13.141 12.232 10.917 8.042 6.159 1.000 0.935 0.871 0.777 0.572 0.438

25 MIAMI‐DADE 8.099 7.329 6.561 5.509 3.228 1.864 1.000 0.905 0.810 0.680 0.399 0.230

26 MIAMI‐DADE 11.892 10.982 10.074 8.803 6.006 4.119 1.000 0.923 0.847 0.740 0.505 0.346

27 MONROE 13.618 12.773 11.930 10.613 7.698 5.661 1.000 0.938 0.876 0.779 0.565 0.416

28 MONROE 20.993 19.955 18.919 17.292 13.653 10.871 1.000 0.951 0.901 0.824 0.650 0.518

29 OKALOOSA 3.245 2.654 2.064 1.578 0.985 0.748 1.000 0.818 0.636 0.486 0.304 0.231

30 OSCEOLA 2.131 1.641 1.153 0.821 0.328 0.145 1.000 0.770 0.541 0.385 0.154 0.068

31 OSCEOLA 2.774 2.170 1.569 1.143 0.497 0.241 1.000 0.782 0.565 0.412 0.179 0.087

32 PALM BEACH 7.619 6.831 6.045 4.961 2.683 1.526 1.000 0.897 0.793 0.651 0.352 0.200

33 PALM BEACH 12.449 11.500 10.553 9.188 6.224 4.426 1.000 0.924 0.848 0.738 0.500 0.356

34 PINELLAS 4.338 3.841 3.345 2.641 1.188 0.565 1.000 0.885 0.771 0.609 0.274 0.130

35 SAINT JOHNS 1.624 1.252 0.882 0.612 0.326 0.245 1.000 0.771 0.543 0.377 0.200 0.151

36 SANTA ROSA 2.236 1.768 1.300 0.927 0.494 0.360 1.000 0.790 0.581 0.414 0.221 0.161

37 SEMINOLE 3.707 3.224 2.742 2.138 0.912 0.362 1.000 0.870 0.740 0.577 0.246 0.098

38 TAYLOR 0.860 0.625 0.392 0.239 0.098 0.073 1.000 0.727 0.456 0.277 0.115 0.085

39 VOLUSIA 3.424 2.907 2.393 1.887 0.939 0.496 1.000 0.849 0.699 0.551 0.274 0.145

40 WAKULLA 2.429 1.939 1.451 1.078 0.661 0.513 1.000 0.798 0.598 0.444 0.272 0.211

Frame Owners

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

1 BAY 3.971 3.309 2.649 2.120 1.470 1.161 1.000 0.833 0.667 0.534 0.370 0.292

2 BREVARD 4.822 4.226 3.633 2.896 1.407 0.709 1.000 0.876 0.753 0.601 0.292 0.147

3 BREVARD 4.576 3.989 3.405 2.683 1.232 0.575 1.000 0.872 0.744 0.586 0.269 0.126

4 BROWARD 9.145 8.296 7.449 6.305 3.855 2.386 1.000 0.907 0.815 0.689 0.422 0.261

5 BROWARD 15.010 13.992 12.976 11.542 8.378 6.144 1.000 0.932 0.864 0.769 0.558 0.409

6 CITRUS 3.472 3.002 2.534 1.977 0.861 0.353 1.000 0.865 0.730 0.569 0.248 0.102

7 CLAY 0.964 0.681 0.399 0.242 0.112 0.082 1.000 0.706 0.414 0.251 0.116 0.085

8 COLLIER 6.186 5.421 4.657 3.732 1.869 0.973 1.000 0.876 0.753 0.603 0.302 0.157

9 COLUMBIA 0.793 0.552 0.313 0.181 0.069 0.051 1.000 0.696 0.394 0.228 0.087 0.064

10 DIXIE 2.803 2.285 1.769 1.381 0.938 0.742 1.000 0.815 0.631 0.493 0.335 0.265

11 DUVAL 2.073 1.662 1.253 0.957 0.578 0.461 1.000 0.802 0.604 0.462 0.279 0.223

12 FRANKLIN 5.387 4.644 3.902 3.293 2.510 2.045 1.000 0.862 0.724 0.611 0.466 0.380

13 GLADES 5.437 4.717 3.999 3.166 1.506 0.716 1.000 0.868 0.736 0.582 0.277 0.132

14 HAMILTON 0.685 0.480 0.276 0.161 0.064 0.047 1.000 0.700 0.403 0.236 0.094 0.069

15 HILLSBOROUGH 4.415 3.853 3.294 2.623 1.276 0.644 1.000 0.873 0.746 0.594 0.289 0.146

16 HERNANDO 3.761 3.264 2.770 2.155 0.928 0.395 1.000 0.868 0.736 0.573 0.247 0.105

17 HOLMES 1.361 0.993 0.627 0.392 0.162 0.117 1.000 0.730 0.460 0.288 0.119 0.086

18 INDIAN RIVER 10.718 9.852 8.987 7.924 5.719 4.299 1.000 0.919 0.839 0.739 0.534 0.401

19 JACKSON 1.100 0.784 0.470 0.281 0.108 0.079 1.000 0.713 0.427 0.255 0.098 0.072

20 LEE 5.657 4.915 4.176 3.357 1.728 0.881 1.000 0.869 0.738 0.593 0.305 0.156

21 LEON 1.061 0.765 0.470 0.292 0.124 0.091 1.000 0.721 0.443 0.275 0.117 0.086

22 MARION 1.710 1.294 0.880 0.621 0.249 0.110 1.000 0.757 0.515 0.363 0.145 0.064

23 MARTIN 5.932 5.230 4.529 3.606 1.731 0.885 1.000 0.882 0.764 0.608 0.292 0.149

24 MARTIN 13.013 12.104 11.196 9.907 7.129 5.357 1.000 0.930 0.860 0.761 0.548 0.412

25 MIAMI‐DADE 7.884 7.115 6.347 5.306 3.069 1.755 1.000 0.902 0.805 0.673 0.389 0.223

26 MIAMI‐DADE 11.412 10.502 9.595 8.338 5.590 3.764 1.000 0.920 0.841 0.731 0.490 0.330

27 MONROE 12.831 11.988 11.146 9.844 6.991 5.043 1.000 0.934 0.869 0.767 0.545 0.393

28 MONROE 19.326 18.290 17.255 15.646 12.079 9.405 1.000 0.946 0.893 0.810 0.625 0.487

29 OKALOOSA 3.051 2.461 1.873 1.415 0.882 0.661 1.000 0.807 0.614 0.464 0.289 0.217

30 OSCEOLA 2.080 1.591 1.103 0.785 0.318 0.141 1.000 0.765 0.530 0.377 0.153 0.068

31 OSCEOLA 2.705 2.102 1.501 1.093 0.481 0.234 1.000 0.777 0.555 0.404 0.178 0.086

32 PALM BEACH 7.279 6.493 5.708 4.649 2.464 1.402 1.000 0.892 0.784 0.639 0.339 0.193

33 PALM BEACH 11.682 10.735 9.789 8.452 5.593 3.914 1.000 0.919 0.838 0.723 0.479 0.335

34 PINELLAS 4.235 3.738 3.242 2.547 1.124 0.527 1.000 0.883 0.766 0.601 0.265 0.124

35 SAINT JOHNS 1.543 1.172 0.803 0.549 0.296 0.220 1.000 0.760 0.520 0.356 0.192 0.143

36 SANTA ROSA 2.119 1.651 1.185 0.835 0.449 0.325 1.000 0.779 0.559 0.394 0.212 0.154

37 SEMINOLE 3.641 3.158 2.677 2.081 0.881 0.350 1.000 0.867 0.735 0.572 0.242 0.096

38 TAYLOR 0.823 0.589 0.356 0.213 0.091 0.068 1.000 0.715 0.432 0.258 0.110 0.082

39 VOLUSIA 3.364 2.847 2.333 1.837 0.907 0.471 1.000 0.846 0.693 0.546 0.270 0.140

40 WAKULLA 2.285 1.796 1.309 0.960 0.587 0.448 1.000 0.786 0.573 0.420 0.257 0.196

Masonry Owners
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

1 BAY 17.065 15.642 15.642 14.727 12.613 10.604 1.000 0.917 0.917 0.863 0.739 0.621

2 BREVARD 14.524 13.296 13.296 12.357 10.088 8.043 1.000 0.915 0.915 0.851 0.695 0.554

3 BREVARD 13.254 12.045 12.045 11.122 8.899 6.927 1.000 0.909 0.909 0.839 0.671 0.523

4 BROWARD 29.331 27.571 27.571 26.140 22.574 19.039 1.000 0.940 0.940 0.891 0.770 0.649

5 BROWARD 50.694 48.585 48.585 46.826 42.353 37.542 1.000 0.958 0.958 0.924 0.835 0.741

6 CITRUS 8.732 7.759 7.759 7.030 5.296 3.851 1.000 0.889 0.889 0.805 0.607 0.441

7 CLAY 3.231 2.621 2.621 2.277 1.529 0.986 1.000 0.811 0.811 0.705 0.473 0.305

8 COLLIER 24.592 22.997 22.997 21.693 18.436 15.193 1.000 0.935 0.935 0.882 0.750 0.618

9 COLUMBIA 2.368 1.852 1.852 1.570 0.970 0.564 1.000 0.782 0.782 0.663 0.409 0.238

10 DIXIE 11.765 10.649 10.649 9.950 8.352 6.891 1.000 0.905 0.905 0.846 0.710 0.586

11 DUVAL 8.595 7.726 7.726 7.191 5.979 4.905 1.000 0.899 0.899 0.837 0.696 0.571

12 FRANKLIN 21.683 20.087 20.087 19.070 16.734 14.449 1.000 0.926 0.926 0.879 0.772 0.666

13 GLADES 17.678 16.191 16.191 15.043 12.249 9.677 1.000 0.916 0.916 0.851 0.693 0.547

14 HAMILTON 2.075 1.635 1.635 1.394 0.878 0.528 1.000 0.788 0.788 0.672 0.423 0.255

15 HILLSBOROUGH 14.104 12.937 12.937 12.039 9.859 7.868 1.000 0.917 0.917 0.854 0.699 0.558

16 HERNANDO 11.023 10.002 10.002 9.216 7.304 5.571 1.000 0.907 0.907 0.836 0.663 0.505

17 HOLMES 4.744 3.954 3.954 3.489 2.455 1.643 1.000 0.833 0.833 0.735 0.517 0.346

18 INDIAN RIVER 42.619 40.812 40.812 39.363 35.734 31.878 1.000 0.958 0.958 0.924 0.838 0.748

19 JACKSON 3.532 2.854 2.854 2.466 1.617 0.993 1.000 0.808 0.808 0.698 0.458 0.281

20 LEE 21.768 20.226 20.226 18.981 15.900 12.925 1.000 0.929 0.929 0.872 0.730 0.594

21 LEON 3.526 2.891 2.891 2.528 1.733 1.144 1.000 0.820 0.820 0.717 0.492 0.324

22 MARION 6.766 5.897 5.897 5.256 3.747 2.544 1.000 0.872 0.872 0.777 0.554 0.376

23 MARTIN 18.369 16.901 16.901 15.741 12.920 10.353 1.000 0.920 0.920 0.857 0.703 0.564

24 MARTIN 46.226 44.329 44.329 42.767 38.838 34.684 1.000 0.959 0.959 0.925 0.840 0.750

25 MIAMI‐DADE 25.090 23.496 23.496 22.198 18.958 15.729 1.000 0.936 0.936 0.885 0.756 0.627

26 MIAMI‐DADE 39.059 37.174 37.174 35.620 31.708 27.587 1.000 0.952 0.952 0.912 0.812 0.706

27 MONROE 53.110 51.330 51.330 49.818 45.926 41.459 1.000 0.966 0.966 0.938 0.865 0.781

28 MONROE 75.250 73.081 73.081 71.230 66.440 60.838 1.000 0.971 0.971 0.947 0.883 0.808

29 OKALOOSA 14.168 12.897 12.897 12.085 10.221 8.460 1.000 0.910 0.910 0.853 0.721 0.597

30 OSCEOLA 8.712 7.689 7.689 6.918 5.076 3.541 1.000 0.883 0.883 0.794 0.583 0.406

31 OSCEOLA 13.360 12.097 12.097 11.136 8.819 6.761 1.000 0.906 0.906 0.834 0.660 0.506

32 PALM BEACH 24.153 22.510 22.510 21.195 17.964 14.898 1.000 0.932 0.932 0.878 0.744 0.617

33 PALM BEACH 42.035 40.058 40.058 38.435 34.363 30.137 1.000 0.953 0.953 0.914 0.817 0.717

34 PINELLAS 12.077 11.042 11.042 10.225 8.232 6.420 1.000 0.914 0.914 0.847 0.682 0.532

35 SAINT JOHNS 6.298 5.497 5.497 5.017 3.942 3.038 1.000 0.873 0.873 0.797 0.626 0.482

36 SANTA ROSA 9.587 8.579 8.579 7.943 6.493 5.158 1.000 0.895 0.895 0.829 0.677 0.538

37 SEMINOLE 8.409 7.407 7.407 6.658 4.882 3.420 1.000 0.881 0.881 0.792 0.580 0.407

38 TAYLOR 2.784 2.279 2.279 1.992 1.366 0.902 1.000 0.818 0.818 0.715 0.490 0.324

39 VOLUSIA 13.556 12.494 12.494 11.676 9.690 7.862 1.000 0.922 0.922 0.861 0.715 0.580

40 WAKULLA 9.561 8.507 8.507 7.858 6.390 5.110 1.000 0.890 0.890 0.822 0.668 0.534

Mobile Homes
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

1 BAY 1.692 1.030 1.100 1.030 0.904 0.815 1.000 0.608 0.650 0.608 0.534 0.482

2 BREVARD 1.014 0.514 0.591 0.514 0.365 0.313 1.000 0.508 0.583 0.508 0.361 0.309

3 BREVARD 0.904 0.420 0.493 0.420 0.281 0.238 1.000 0.465 0.545 0.465 0.311 0.263

4 BROWARD 2.714 1.836 2.017 1.836 1.451 1.226 1.000 0.677 0.743 0.677 0.535 0.452

5 BROWARD 6.106 4.923 5.199 4.923 4.294 3.793 1.000 0.806 0.851 0.806 0.703 0.621

6 CITRUS 0.696 0.288 0.359 0.288 0.154 0.121 1.000 0.415 0.516 0.415 0.222 0.175

7 CLAY 0.277 0.071 0.081 0.071 0.058 0.055 1.000 0.257 0.294 0.257 0.209 0.197

8 COLLIER 1.440 0.740 0.861 0.740 0.497 0.411 1.000 0.514 0.598 0.514 0.345 0.285

9 COLUMBIA 0.214 0.046 0.052 0.046 0.037 0.036 1.000 0.212 0.244 0.212 0.173 0.166

10 DIXIE 1.148 0.653 0.701 0.653 0.570 0.515 1.000 0.569 0.611 0.569 0.497 0.449

11 DUVAL 0.783 0.487 0.504 0.487 0.455 0.428 1.000 0.623 0.644 0.623 0.581 0.547

12 FRANKLIN 2.595 1.819 1.916 1.819 1.633 1.475 1.000 0.701 0.738 0.701 0.629 0.568

13 GLADES 1.089 0.509 0.592 0.509 0.344 0.289 1.000 0.467 0.544 0.467 0.316 0.265

14 HAMILTON 0.191 0.042 0.049 0.042 0.034 0.033 1.000 0.221 0.255 0.221 0.179 0.171

15 HILLSBOROUGH 1.016 0.505 0.598 0.505 0.324 0.267 1.000 0.497 0.588 0.497 0.319 0.262

16 HERNANDO 0.670 0.282 0.332 0.282 0.185 0.155 1.000 0.421 0.496 0.421 0.275 0.232

17 HOLMES 0.397 0.103 0.120 0.103 0.082 0.077 1.000 0.261 0.303 0.261 0.206 0.193

18 INDIAN RIVER 4.298 3.392 3.585 3.392 2.962 2.651 1.000 0.789 0.834 0.789 0.689 0.617

19 JACKSON 0.313 0.071 0.083 0.071 0.056 0.054 1.000 0.227 0.265 0.227 0.179 0.171

20 LEE 1.237 0.615 0.711 0.615 0.421 0.351 1.000 0.497 0.575 0.497 0.340 0.283

21 LEON 0.307 0.080 0.092 0.080 0.064 0.060 1.000 0.260 0.298 0.260 0.209 0.196

22 MARION 0.279 0.067 0.075 0.067 0.054 0.051 1.000 0.241 0.268 0.241 0.194 0.184

23 MARTIN 1.501 0.772 0.928 0.772 0.466 0.371 1.000 0.515 0.618 0.515 0.311 0.247

24 MARTIN 5.620 4.497 4.781 4.497 3.870 3.440 1.000 0.800 0.851 0.800 0.689 0.612

25 MIAMI‐DADE 2.123 1.334 1.493 1.334 0.999 0.821 1.000 0.629 0.703 0.629 0.471 0.387

26 MIAMI‐DADE 3.895 2.892 3.111 2.892 2.406 2.070 1.000 0.742 0.799 0.742 0.618 0.531

27 MONROE 5.643 4.373 4.756 4.373 3.517 2.982 1.000 0.775 0.843 0.775 0.623 0.528

28 MONROE 9.823 8.186 8.696 8.186 7.015 6.145 1.000 0.833 0.885 0.833 0.714 0.626

29 OKALOOSA 1.142 0.565 0.621 0.565 0.473 0.423 1.000 0.495 0.544 0.495 0.415 0.370

30 OSCEOLA 0.342 0.085 0.095 0.085 0.069 0.065 1.000 0.249 0.277 0.249 0.201 0.190

31 OSCEOLA 0.466 0.136 0.150 0.136 0.112 0.104 1.000 0.293 0.322 0.293 0.240 0.223

32 PALM BEACH 2.024 1.178 1.365 1.178 0.803 0.663 1.000 0.582 0.674 0.582 0.397 0.327

33 PALM BEACH 4.368 3.245 3.516 3.245 2.662 2.326 1.000 0.743 0.805 0.743 0.609 0.533

34 PINELLAS 0.994 0.473 0.581 0.473 0.265 0.208 1.000 0.476 0.584 0.476 0.267 0.210

35 SAINT JOHNS 0.516 0.191 0.215 0.191 0.157 0.142 1.000 0.371 0.416 0.371 0.303 0.276

36 SANTA ROSA 0.723 0.281 0.319 0.281 0.226 0.204 1.000 0.389 0.441 0.389 0.312 0.281

37 SEMINOLE 0.752 0.309 0.392 0.309 0.152 0.116 1.000 0.412 0.522 0.412 0.202 0.154

38 TAYLOR 0.252 0.061 0.071 0.061 0.049 0.046 1.000 0.244 0.284 0.244 0.193 0.181

39 VOLUSIA 0.609 0.287 0.308 0.287 0.247 0.224 1.000 0.472 0.506 0.472 0.405 0.369

40 WAKULLA 0.840 0.390 0.427 0.390 0.330 0.297 1.000 0.464 0.509 0.464 0.393 0.354
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

1 BAY 1.482 0.855 0.916 0.855 0.743 0.663 1.000 0.577 0.618 0.577 0.501 0.447

2 BREVARD 0.980 0.490 0.565 0.490 0.343 0.292 1.000 0.499 0.577 0.499 0.350 0.298

3 BREVARD 0.880 0.404 0.476 0.404 0.267 0.226 1.000 0.460 0.541 0.460 0.304 0.257

4 BROWARD 2.575 1.710 1.888 1.710 1.333 1.118 1.000 0.664 0.733 0.664 0.518 0.434

5 BROWARD 5.498 4.332 4.602 4.332 3.722 3.251 1.000 0.788 0.837 0.788 0.677 0.591

6 CITRUS 0.681 0.280 0.350 0.280 0.149 0.117 1.000 0.412 0.514 0.412 0.219 0.172

7 CLAY 0.255 0.063 0.071 0.063 0.052 0.049 1.000 0.248 0.280 0.248 0.206 0.193

8 COLLIER 1.390 0.702 0.822 0.702 0.463 0.380 1.000 0.505 0.591 0.505 0.333 0.274

9 COLUMBIA 0.197 0.040 0.045 0.040 0.033 0.032 1.000 0.202 0.229 0.202 0.167 0.161

10 DIXIE 1.017 0.550 0.591 0.550 0.477 0.427 1.000 0.540 0.581 0.540 0.469 0.419

11 DUVAL 0.572 0.295 0.308 0.295 0.270 0.253 1.000 0.515 0.539 0.515 0.472 0.442

12 FRANKLIN 2.228 1.492 1.578 1.492 1.324 1.182 1.000 0.670 0.708 0.670 0.594 0.531

13 GLADES 1.055 0.485 0.568 0.485 0.324 0.272 1.000 0.460 0.538 0.460 0.307 0.258

14 HAMILTON 0.176 0.037 0.042 0.037 0.031 0.029 1.000 0.211 0.239 0.211 0.174 0.166

15 HILLSBOROUGH 0.991 0.487 0.579 0.487 0.308 0.252 1.000 0.492 0.585 0.492 0.311 0.255

16 HERNANDO 0.650 0.269 0.319 0.269 0.174 0.146 1.000 0.414 0.491 0.414 0.267 0.224

17 HOLMES 0.367 0.092 0.105 0.092 0.074 0.069 1.000 0.251 0.287 0.251 0.202 0.189

18 INDIAN RIVER 3.845 2.953 3.143 2.953 2.535 2.243 1.000 0.768 0.818 0.768 0.659 0.583

19 JACKSON 0.289 0.063 0.072 0.063 0.051 0.048 1.000 0.217 0.249 0.217 0.175 0.167

20 LEE 1.203 0.592 0.687 0.592 0.403 0.337 1.000 0.492 0.571 0.492 0.335 0.280

21 LEON 0.283 0.071 0.080 0.071 0.058 0.054 1.000 0.249 0.283 0.249 0.204 0.192

22 MARION 0.270 0.065 0.072 0.065 0.052 0.049 1.000 0.239 0.266 0.239 0.193 0.183

23 MARTIN 1.435 0.720 0.871 0.720 0.428 0.344 1.000 0.501 0.607 0.501 0.298 0.239

24 MARTIN 4.866 3.764 4.038 3.764 3.170 2.782 1.000 0.774 0.830 0.774 0.651 0.572

25 MIAMI‐DADE 2.049 1.271 1.427 1.271 0.942 0.771 1.000 0.620 0.697 0.620 0.460 0.376

26 MIAMI‐DADE 3.641 2.651 2.867 2.651 2.177 1.856 1.000 0.728 0.787 0.728 0.598 0.510

27 MONROE 5.153 3.898 4.276 3.898 3.065 2.562 1.000 0.757 0.830 0.757 0.595 0.497

28 MONROE 8.626 7.011 7.512 7.011 5.877 5.063 1.000 0.813 0.871 0.813 0.681 0.587

29 OKALOOSA 1.045 0.499 0.548 0.499 0.418 0.371 1.000 0.478 0.524 0.478 0.400 0.355

30 OSCEOLA 0.332 0.082 0.091 0.082 0.066 0.062 1.000 0.247 0.275 0.247 0.199 0.188

31 OSCEOLA 0.452 0.132 0.145 0.132 0.108 0.101 1.000 0.292 0.321 0.292 0.239 0.222

32 PALM BEACH 1.907 1.076 1.257 1.076 0.718 0.592 1.000 0.564 0.660 0.564 0.376 0.310

33 PALM BEACH 3.893 2.789 3.053 2.789 2.235 1.932 1.000 0.716 0.784 0.716 0.574 0.496

34 PINELLAS 0.957 0.445 0.551 0.445 0.241 0.188 1.000 0.465 0.575 0.465 0.252 0.197

35 SAINT JOHNS 0.476 0.170 0.189 0.170 0.140 0.126 1.000 0.356 0.398 0.356 0.294 0.266

36 SANTA ROSA 0.670 0.253 0.284 0.253 0.204 0.183 1.000 0.377 0.425 0.377 0.305 0.274

37 SEMINOLE 0.735 0.300 0.382 0.300 0.146 0.112 1.000 0.408 0.519 0.408 0.199 0.153

38 TAYLOR 0.233 0.054 0.062 0.054 0.043 0.041 1.000 0.232 0.266 0.232 0.187 0.175

39 VOLUSIA 0.592 0.278 0.298 0.278 0.238 0.216 1.000 0.469 0.504 0.469 0.402 0.365

40 WAKULLA 0.762 0.338 0.370 0.338 0.286 0.256 1.000 0.443 0.485 0.443 0.375 0.335
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

1 BAY 2.021 1.376 1.376 1.163 1.002 0.887 1.000 0.681 0.681 0.575 0.496 0.439

2 BREVARD 1.440 0.876 0.876 0.624 0.450 0.347 1.000 0.609 0.609 0.433 0.313 0.241

3 BREVARD 1.310 0.759 0.759 0.515 0.354 0.264 1.000 0.579 0.579 0.393 0.270 0.201

4 BROWARD 3.502 2.610 2.610 2.169 1.711 1.373 1.000 0.745 0.745 0.619 0.489 0.392

5 BROWARD 7.363 6.233 6.233 5.642 4.896 4.217 1.000 0.846 0.846 0.766 0.665 0.573

6 CITRUS 1.004 0.562 0.562 0.362 0.213 0.136 1.000 0.560 0.560 0.361 0.212 0.135

7 CLAY 0.358 0.141 0.141 0.080 0.062 0.057 1.000 0.393 0.393 0.222 0.172 0.158

8 COLLIER 1.980 1.235 1.235 0.898 0.622 0.456 1.000 0.624 0.624 0.454 0.314 0.230

9 COLUMBIA 0.282 0.101 0.101 0.050 0.039 0.036 1.000 0.357 0.357 0.178 0.137 0.128

10 DIXIE 1.379 0.892 0.892 0.737 0.631 0.560 1.000 0.647 0.647 0.534 0.457 0.406

11 DUVAL 0.970 0.641 0.641 0.540 0.496 0.460 1.000 0.661 0.661 0.557 0.511 0.474

12 FRANKLIN 3.037 2.299 2.299 2.044 1.812 1.614 1.000 0.757 0.757 0.673 0.597 0.532

13 GLADES 1.574 0.915 0.915 0.622 0.432 0.321 1.000 0.582 0.582 0.395 0.274 0.204

14 HAMILTON 0.250 0.091 0.091 0.047 0.036 0.033 1.000 0.365 0.365 0.188 0.144 0.134

15 HILLSBOROUGH 1.402 0.861 0.861 0.617 0.412 0.296 1.000 0.614 0.614 0.440 0.294 0.211

16 HERNANDO 1.009 0.547 0.547 0.346 0.235 0.173 1.000 0.543 0.543 0.343 0.233 0.171

17 HOLMES 0.513 0.206 0.206 0.117 0.087 0.079 1.000 0.401 0.401 0.227 0.169 0.154

18 INDIAN RIVER 5.197 4.314 4.314 3.887 3.387 2.943 1.000 0.830 0.830 0.748 0.652 0.566

19 JACKSON 0.407 0.152 0.152 0.079 0.059 0.055 1.000 0.373 0.373 0.195 0.145 0.135

20 LEE 1.737 1.059 1.059 0.751 0.525 0.389 1.000 0.610 0.610 0.432 0.302 0.224

21 LEON 0.398 0.158 0.158 0.090 0.068 0.062 1.000 0.398 0.398 0.225 0.172 0.157

22 MARION 0.432 0.171 0.171 0.076 0.060 0.053 1.000 0.396 0.396 0.176 0.138 0.123

23 MARTIN 2.029 1.293 1.293 0.948 0.603 0.412 1.000 0.637 0.637 0.467 0.297 0.203

24 MARTIN 6.716 5.679 5.679 5.143 4.423 3.810 1.000 0.846 0.846 0.766 0.659 0.567

25 MIAMI‐DADE 2.807 1.998 1.998 1.598 1.200 0.923 1.000 0.712 0.712 0.569 0.428 0.329

26 MIAMI‐DADE 4.863 3.877 3.877 3.372 2.790 2.311 1.000 0.797 0.797 0.693 0.574 0.475

27 MONROE 6.692 5.654 5.654 5.040 4.086 3.339 1.000 0.845 0.845 0.753 0.611 0.499

28 MONROE 11.389 10.087 10.087 9.303 7.997 6.849 1.000 0.886 0.886 0.817 0.702 0.601

29 OKALOOSA 1.394 0.826 0.826 0.644 0.524 0.456 1.000 0.593 0.593 0.462 0.376 0.327

30 OSCEOLA 0.529 0.213 0.213 0.097 0.076 0.067 1.000 0.403 0.403 0.183 0.144 0.127

31 OSCEOLA 0.707 0.306 0.306 0.157 0.124 0.109 1.000 0.433 0.433 0.222 0.176 0.154

32 PALM BEACH 2.665 1.824 1.824 1.421 0.994 0.736 1.000 0.684 0.684 0.533 0.373 0.276

33 PALM BEACH 5.367 4.302 4.302 3.761 3.092 2.580 1.000 0.802 0.802 0.701 0.576 0.481

34 PINELLAS 1.367 0.832 0.832 0.585 0.355 0.232 1.000 0.608 0.608 0.428 0.260 0.169

35 SAINT JOHNS 0.645 0.315 0.315 0.217 0.171 0.151 1.000 0.488 0.488 0.337 0.265 0.234

36 SANTA ROSA 0.899 0.458 0.458 0.322 0.248 0.216 1.000 0.510 0.510 0.358 0.275 0.241

37 SEMINOLE 1.076 0.605 0.605 0.391 0.217 0.130 1.000 0.563 0.563 0.364 0.201 0.121

38 TAYLOR 0.321 0.124 0.124 0.069 0.051 0.047 1.000 0.385 0.385 0.215 0.160 0.147

39 VOLUSIA 0.909 0.505 0.505 0.336 0.281 0.243 1.000 0.556 0.556 0.370 0.309 0.267

40 WAKULLA 1.029 0.580 0.580 0.442 0.364 0.320 1.000 0.563 0.563 0.429 0.353 0.311
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Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

1 BAY 1.787 1.169 1.169 0.969 0.825 0.721 1.000 0.654 0.654 0.542 0.462 0.403

2 BREVARD 1.400 0.844 0.844 0.595 0.424 0.323 1.000 0.602 0.602 0.425 0.303 0.231

3 BREVARD 1.281 0.737 0.737 0.496 0.338 0.250 1.000 0.575 0.575 0.387 0.264 0.195

4 BROWARD 3.339 2.458 2.458 2.025 1.577 1.250 1.000 0.736 0.736 0.607 0.472 0.374

5 BROWARD 6.692 5.574 5.574 4.995 4.268 3.620 1.000 0.833 0.833 0.746 0.638 0.541

6 CITRUS 0.985 0.549 0.549 0.353 0.206 0.131 1.000 0.557 0.557 0.358 0.209 0.133

7 CLAY 0.333 0.128 0.128 0.070 0.056 0.051 1.000 0.383 0.383 0.211 0.167 0.153

8 COLLIER 1.920 1.185 1.185 0.854 0.582 0.421 1.000 0.617 0.617 0.445 0.303 0.219

9 COLUMBIA 0.263 0.091 0.091 0.044 0.034 0.032 1.000 0.347 0.347 0.166 0.131 0.123

10 DIXIE 1.234 0.768 0.768 0.622 0.528 0.463 1.000 0.622 0.622 0.504 0.428 0.375

11 DUVAL 0.741 0.429 0.429 0.333 0.297 0.271 1.000 0.579 0.579 0.450 0.401 0.366

12 FRANKLIN 2.634 1.926 1.926 1.686 1.475 1.295 1.000 0.731 0.731 0.640 0.560 0.491

13 GLADES 1.530 0.882 0.882 0.594 0.408 0.301 1.000 0.576 0.576 0.389 0.267 0.197

14 HAMILTON 0.232 0.082 0.082 0.041 0.032 0.030 1.000 0.355 0.355 0.176 0.138 0.129

15 HILLSBOROUGH 1.370 0.837 0.837 0.596 0.394 0.280 1.000 0.611 0.611 0.435 0.287 0.204

16 HERNANDO 0.983 0.529 0.529 0.331 0.223 0.162 1.000 0.538 0.538 0.337 0.227 0.165

17 HOLMES 0.477 0.186 0.186 0.103 0.079 0.072 1.000 0.391 0.391 0.216 0.164 0.150

18 INDIAN RIVER 4.697 3.826 3.826 3.405 2.915 2.490 1.000 0.814 0.814 0.725 0.621 0.530

19 JACKSON 0.378 0.137 0.137 0.069 0.053 0.049 1.000 0.362 0.362 0.183 0.140 0.130

20 LEE 1.691 1.024 1.024 0.723 0.502 0.372 1.000 0.606 0.606 0.428 0.297 0.220

21 LEON 0.370 0.143 0.143 0.079 0.061 0.056 1.000 0.387 0.387 0.213 0.166 0.152

22 MARION 0.420 0.166 0.166 0.074 0.057 0.051 1.000 0.395 0.395 0.175 0.137 0.121

23 MARTIN 1.941 1.217 1.217 0.885 0.554 0.379 1.000 0.627 0.627 0.456 0.285 0.196

24 MARTIN 5.895 4.874 4.874 4.354 3.664 3.098 1.000 0.827 0.827 0.738 0.622 0.525

25 MIAMI‐DADE 2.715 1.916 1.916 1.524 1.133 0.864 1.000 0.706 0.706 0.561 0.417 0.318

26 MIAMI‐DADE 4.574 3.598 3.598 3.103 2.533 2.071 1.000 0.787 0.787 0.678 0.554 0.453

27 MONROE 6.148 5.120 5.120 4.517 3.587 2.875 1.000 0.833 0.833 0.735 0.583 0.468

28 MONROE 10.086 8.797 8.797 8.026 6.757 5.666 1.000 0.872 0.872 0.796 0.670 0.562

29 OKALOOSA 1.283 0.739 0.739 0.568 0.462 0.399 1.000 0.576 0.576 0.443 0.360 0.311

30 OSCEOLA 0.513 0.206 0.206 0.094 0.073 0.065 1.000 0.401 0.401 0.182 0.142 0.126

31 OSCEOLA 0.687 0.296 0.296 0.152 0.120 0.105 1.000 0.431 0.431 0.221 0.175 0.153

32 PALM BEACH 2.520 1.692 1.692 1.303 0.893 0.656 1.000 0.671 0.671 0.517 0.354 0.260

33 PALM BEACH 4.839 3.789 3.789 3.266 2.623 2.150 1.000 0.783 0.783 0.675 0.542 0.444

34 PINELLAS 1.322 0.793 0.793 0.552 0.327 0.209 1.000 0.600 0.600 0.417 0.247 0.158

35 SAINT JOHNS 0.598 0.283 0.283 0.192 0.152 0.134 1.000 0.474 0.474 0.321 0.255 0.224

36 SANTA ROSA 0.837 0.415 0.415 0.288 0.223 0.195 1.000 0.496 0.496 0.344 0.267 0.233

37 SEMINOLE 1.053 0.590 0.590 0.380 0.209 0.125 1.000 0.560 0.560 0.361 0.198 0.119

38 TAYLOR 0.299 0.111 0.111 0.060 0.046 0.042 1.000 0.372 0.372 0.201 0.154 0.141

39 VOLUSIA 0.887 0.490 0.490 0.324 0.270 0.233 1.000 0.553 0.553 0.365 0.305 0.263

40 WAKULLA 0.942 0.512 0.512 0.383 0.314 0.275 1.000 0.544 0.544 0.407 0.334 0.292

Masonry Condo Unit

grullont
Typewritten Text
Appendix F

grullont
Typewritten Text

grullont
Typewritten Text
429



Form A‐6: Logical Relationship to Risk ‐ Deductibles

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10% $0 $500 1% 2% 5% 10%

Construction / Policy Location County

Loss Cost at different Deductibles Ratios relative $0

$0  2% 3% 5% 10% $0  2% 3% 5% 10%

1 BAY 14.459 12.292 11.491 10.121 7.499 1.000 0.850 0.795 0.700 0.519

2 BREVARD 9.477 7.704 7.080 6.042 4.158 1.000 0.813 0.747 0.638 0.439

3 BREVARD 8.421 6.705 6.108 5.116 3.356 1.000 0.796 0.725 0.608 0.399

4 BROWARD 18.028 15.372 14.364 12.634 9.241 1.000 0.853 0.797 0.701 0.513

5 BROWARD 30.472 27.125 25.798 23.432 18.628 1.000 0.890 0.847 0.769 0.611

6 CITRUS 5.009 3.728 3.313 2.652 1.544 1.000 0.744 0.661 0.529 0.308

7 CLAY 2.220 1.484 1.278 0.972 0.507 1.000 0.668 0.576 0.438 0.228

8 COLLIER 15.521 13.055 12.104 10.450 7.247 1.000 0.841 0.780 0.673 0.467

9 COLUMBIA 1.554 0.954 0.800 0.579 0.274 1.000 0.614 0.515 0.372 0.176

10 DIXIE 7.642 6.232 5.741 4.918 3.428 1.000 0.816 0.751 0.644 0.449

11 DUVAL 6.660 5.459 5.057 4.392 3.178 1.000 0.820 0.759 0.659 0.477

12 FRANKLIN 16.424 14.171 13.323 11.847 9.004 1.000 0.863 0.811 0.721 0.548

13 GLADES 11.275 9.114 8.333 7.020 4.611 1.000 0.808 0.739 0.623 0.409

14 HAMILTON 1.323 0.819 0.694 0.513 0.259 1.000 0.619 0.524 0.388 0.196

15 HILLSBOROUGH 8.026 6.452 5.899 4.972 3.281 1.000 0.804 0.735 0.620 0.409

16 HERNANDO 7.163 5.667 5.132 4.238 2.620 1.000 0.791 0.716 0.592 0.366

17 HOLMES 4.080 2.957 2.600 2.040 1.132 1.000 0.725 0.637 0.500 0.277

18 INDIAN RIVER 24.425 21.739 20.701 18.878 15.226 1.000 0.890 0.848 0.773 0.623

19 JACKSON 2.703 1.805 1.543 1.149 0.558 1.000 0.668 0.571 0.425 0.206

20 LEE 12.765 10.528 9.701 8.276 5.559 1.000 0.825 0.760 0.648 0.435

21 LEON 2.313 1.564 1.350 1.033 0.550 1.000 0.676 0.584 0.446 0.238

22 MARION 3.913 2.784 2.425 1.870 0.981 1.000 0.711 0.620 0.478 0.251

23 MARTIN 11.675 9.538 8.779 7.513 5.162 1.000 0.817 0.752 0.643 0.442

24 MARTIN 27.486 24.577 23.447 21.454 17.392 1.000 0.894 0.853 0.781 0.633

25 MIAMI‐DADE 16.939 14.406 13.423 11.707 8.376 1.000 0.850 0.792 0.691 0.494

26 MIAMI‐DADE 24.844 21.850 20.667 18.560 14.317 1.000 0.879 0.832 0.747 0.576

27 MONROE 33.558 30.557 29.302 27.016 22.123 1.000 0.911 0.873 0.805 0.659

28 MONROE 39.710 36.412 35.049 32.575 27.232 1.000 0.917 0.883 0.820 0.686

29 OKALOOSA 12.776 10.811 10.076 8.805 6.320 1.000 0.846 0.789 0.689 0.495

30 OSCEOLA 5.438 4.021 3.550 2.788 1.496 1.000 0.739 0.653 0.513 0.275

31 OSCEOLA 7.770 6.051 5.461 4.492 2.772 1.000 0.779 0.703 0.578 0.357

32 PALM BEACH 15.305 12.872 11.980 10.454 7.568 1.000 0.841 0.783 0.683 0.494

33 PALM BEACH 25.964 22.911 21.730 19.645 15.438 1.000 0.882 0.837 0.757 0.595

34 PINELLAS 7.948 6.416 5.863 4.935 3.225 1.000 0.807 0.738 0.621 0.406

35 SAINT JOHNS 5.212 4.105 3.735 3.121 2.035 1.000 0.788 0.717 0.599 0.390

36 SANTA ROSA 7.967 6.500 5.958 5.014 3.237 1.000 0.816 0.748 0.629 0.406

37 SEMINOLE 4.988 3.646 3.210 2.519 1.378 1.000 0.731 0.644 0.505 0.276

38 TAYLOR 2.122 1.472 1.283 0.993 0.546 1.000 0.694 0.605 0.468 0.257

39 VOLUSIA 8.722 7.174 6.623 5.697 3.980 1.000 0.822 0.759 0.653 0.456

40 WAKULLA 6.880 5.522 5.067 4.319 2.986 1.000 0.803 0.736 0.628 0.434

Loss Cost at different Deductibles Ratios relative $0

Commercial Residential
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Form A‐6: Logical Relationship to Risk ‐ Construction

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Masonry Frame

1 BAY 3.971 4.313 1.086

2 BREVARD 4.822 4.902 1.016

3 BREVARD 4.576 4.639 1.014

4 BROWARD 9.145 9.456 1.034

5 BROWARD 15.010 15.939 1.062

6 CITRUS 3.472 3.526 1.016

7 CLAY 0.964 1.004 1.041

8 COLLIER 6.186 6.317 1.021

9 COLUMBIA 0.793 0.826 1.041

10 DIXIE 2.803 3.019 1.077

11 DUVAL 2.073 2.358 1.137

12 FRANKLIN 5.387 5.930 1.101

13 GLADES 5.437 5.556 1.022

14 HAMILTON 0.685 0.713 1.042

15 HILLSBOROUGH 4.415 4.489 1.017

16 HERNANDO 3.761 3.828 1.018

17 HOLMES 1.361 1.426 1.048

18 INDIAN RIVER 10.718 11.415 1.065

19 JACKSON 1.100 1.149 1.045

20 LEE 5.657 5.795 1.024

21 LEON 1.061 1.109 1.046

22 MARION 1.710 1.750 1.024

23 MARTIN 5.932 6.188 1.043

24 MARTIN 13.013 14.051 1.080

25 MIAMI‐DADE 7.884 8.099 1.027

26 MIAMI‐DADE 11.412 11.892 1.042

27 MONROE 12.831 13.618 1.061

28 MONROE 19.326 20.993 1.086

29 OKALOOSA 3.051 3.245 1.064

30 OSCEOLA 2.080 2.131 1.025

31 OSCEOLA 2.705 2.774 1.025

32 PALM BEACH 7.279 7.619 1.047

33 PALM BEACH 11.682 12.449 1.066

34 PINELLAS 4.235 4.338 1.024

35 SAINT JOHNS 1.543 1.624 1.052

36 SANTA ROSA 2.119 2.236 1.055

37 SEMINOLE 3.641 3.707 1.018

38 TAYLOR 0.823 0.860 1.044

39 VOLUSIA 3.364 3.424 1.018
40 WAKULLA 2.285 2.429 1.063

Frame / Masonry

Owners

Policy
Loss Cost per Construction

Location County
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Form A‐6: Logical Relationship to Risk ‐ Construction

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Masonry Frame
Frame / MasonryPolicy

Loss Cost per Construction
Location County

1 BAY 1.482 1.692 1.142

2 BREVARD 0.980 1.014 1.034

3 BREVARD 0.880 0.904 1.028

4 BROWARD 2.575 2.714 1.054

5 BROWARD 5.498 6.106 1.111

6 CITRUS 0.681 0.696 1.022

7 CLAY 0.255 0.277 1.087

8 COLLIER 1.390 1.440 1.035

9 COLUMBIA 0.197 0.214 1.087

10 DIXIE 1.017 1.148 1.128

11 DUVAL 0.572 0.783 1.369

12 FRANKLIN 2.228 2.595 1.165

13 GLADES 1.055 1.089 1.032

14 HAMILTON 0.176 0.191 1.086

15 HILLSBOROUGH 0.991 1.016 1.026

16 HERNANDO 0.650 0.670 1.031

17 HOLMES 0.367 0.397 1.083

18 INDIAN RIVER 3.845 4.298 1.118

19 JACKSON 0.289 0.313 1.085

20 LEE 1.203 1.237 1.028

21 LEON 0.283 0.307 1.085

22 MARION 0.270 0.279 1.033

23 MARTIN 1.435 1.501 1.046

24 MARTIN 4.866 5.620 1.155

25 MIAMI‐DADE 2.049 2.123 1.036

26 MIAMI‐DADE 3.641 3.895 1.070

27 MONROE 5.153 5.643 1.095

28 MONROE 8.626 9.823 1.139

29 OKALOOSA 1.045 1.142 1.092

30 OSCEOLA 0.332 0.342 1.033

31 OSCEOLA 0.452 0.466 1.030

32 PALM BEACH 1.907 2.024 1.061

33 PALM BEACH 3.893 4.368 1.122

34 PINELLAS 0.957 0.994 1.038

35 SAINT JOHNS 0.476 0.516 1.085

36 SANTA ROSA 0.670 0.723 1.080

37 SEMINOLE 0.735 0.752 1.022

38 TAYLOR 0.233 0.252 1.083

39 VOLUSIA 0.592 0.609 1.028
40 WAKULLA 0.762 0.840 1.101

Renters
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Form A‐6: Logical Relationship to Risk ‐ Construction

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Masonry Frame
Frame / MasonryPolicy

Loss Cost per Construction
Location County

1 BAY 1.787 2.021 1.131

2 BREVARD 1.400 1.440 1.028

3 BREVARD 1.281 1.310 1.023

4 BROWARD 3.339 3.502 1.049

5 BROWARD 6.692 7.363 1.100

6 CITRUS 0.985 1.004 1.020

7 CLAY 0.333 0.358 1.075

8 COLLIER 1.920 1.980 1.031

9 COLUMBIA 0.263 0.282 1.074

10 DIXIE 1.234 1.379 1.118

11 DUVAL 0.741 0.970 1.309

12 FRANKLIN 2.634 3.037 1.153

13 GLADES 1.530 1.574 1.029

14 HAMILTON 0.232 0.250 1.075

15 HILLSBOROUGH 1.370 1.402 1.023

16 HERNANDO 0.983 1.009 1.026

17 HOLMES 0.477 0.513 1.074

18 INDIAN RIVER 4.697 5.197 1.106

19 JACKSON 0.378 0.407 1.075

20 LEE 1.691 1.737 1.027

21 LEON 0.370 0.398 1.075

22 MARION 0.420 0.432 1.030

23 MARTIN 1.941 2.029 1.045

24 MARTIN 5.895 6.716 1.139

25 MIAMI‐DADE 2.715 2.807 1.034

26 MIAMI‐DADE 4.574 4.863 1.063

27 MONROE 6.148 6.692 1.089

28 MONROE 10.086 11.389 1.129

29 OKALOOSA 1.283 1.394 1.087

30 OSCEOLA 0.513 0.529 1.030

31 OSCEOLA 0.687 0.707 1.029

32 PALM BEACH 2.520 2.665 1.058

33 PALM BEACH 4.839 5.367 1.109

34 PINELLAS 1.322 1.367 1.034

35 SAINT JOHNS 0.598 0.645 1.078

36 SANTA ROSA 0.837 0.899 1.075

37 SEMINOLE 1.053 1.076 1.021

38 TAYLOR 0.299 0.321 1.073

39 VOLUSIA 0.887 0.909 1.025
40 WAKULLA 0.942 1.029 1.093

Condo Unit
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Form A‐6: Logical Relationship to Risk ‐ Construction

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Masonry Frame
Frame / MasonryPolicy

Loss Cost per Construction
Location County

Loss Cost per 

Construction

Concrete

1 BAY 7.499

2 BREVARD 4.158

3 BREVARD 3.356

4 BROWARD 9.241

5 BROWARD 18.628

6 CITRUS 1.544

7 CLAY 0.507

8 COLLIER 7.247

9 COLUMBIA 0.274

10 DIXIE 3.428

11 DUVAL 3.178

12 FRANKLIN 9.004

13 GLADES 4.611

14 HAMILTON 0.259

15 HILLSBOROUGH 3.281

16 HERNANDO 2.620

17 HOLMES 1.132

18 INDIAN RIVER 15.226

19 JACKSON 0.558

20 LEE 5.559

21 LEON 0.550

22 MARION 0.981

23 MARTIN 5.162

24 MARTIN 17.392

25 MIAMI‐DADE 8.376

26 MIAMI‐DADE 14.317

27 MONROE 22.123

28 MONROE 27.232

29 OKALOOSA 6.320

30 OSCEOLA 1.496

31 OSCEOLA 2.772

32 PALM BEACH 7.568

33 PALM BEACH 15.438

34 PINELLAS 3.225

35 SAINT JOHNS 2.035

36 SANTA ROSA 3.237

37 SEMINOLE 1.378

38 TAYLOR 0.546

39 VOLUSIA 3.980

40 WAKULLA 2.986

Commercial 

Residential

CountyLocationConstruction / Policy
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Form A‐6: Logical Relationship to Risk  ‐ Policy Form

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Frame Owners Masonry Owners Mobile Homes

1 BAY 4.313 3.971 17.065 3.957 4.298

2 BREVARD 4.902 4.822 14.524 2.963 3.012

3 BREVARD 4.639 4.576 13.254 2.857 2.897

4 BROWARD 9.456 9.145 29.331 3.102 3.207

5 BROWARD 15.939 15.010 50.694 3.181 3.377

6 CITRUS 3.526 3.472 8.732 2.476 2.515

7 CLAY 1.004 0.964 3.231 3.219 3.351

8 COLLIER 6.317 6.186 24.592 3.893 3.975

9 COLUMBIA 0.826 0.793 2.368 2.868 2.985

10 DIXIE 3.019 2.803 11.765 3.897 4.197

11 DUVAL 2.358 2.073 8.595 3.644 4.146

12 FRANKLIN 5.930 5.387 21.683 3.657 4.025

13 GLADES 5.556 5.437 17.678 3.182 3.252

14 HAMILTON 0.713 0.685 2.075 2.909 3.030

15 HILLSBOROUGH 4.489 4.415 14.104 3.142 3.195

16 HERNANDO 3.828 3.761 11.023 2.879 2.931

17 HOLMES 1.426 1.361 4.744 3.327 3.487

18 INDIAN RIVER 11.415 10.718 42.619 3.734 3.977

19 JACKSON 1.149 1.100 3.532 3.074 3.213

20 LEE 5.795 5.657 21.768 3.756 3.848

21 LEON 1.109 1.061 3.526 3.179 3.324

22 MARION 1.750 1.710 6.766 3.865 3.957

23 MARTIN 6.188 5.932 18.369 2.968 3.097

24 MARTIN 14.051 13.013 46.226 3.290 3.552

25 MIAMI‐DADE 8.099 7.884 25.090 3.098 3.182

26 MIAMI‐DADE 11.892 11.412 39.059 3.284 3.423

27 MONROE 13.618 12.831 53.110 3.900 4.139

28 MONROE 20.993 19.326 75.250 3.585 3.894

29 OKALOOSA 3.245 3.051 14.168 4.366 4.643

30 OSCEOLA 2.131 2.080 8.712 4.088 4.189

31 OSCEOLA 2.774 2.705 13.360 4.816 4.939

32 PALM BEACH 7.619 7.279 24.153 3.170 3.318

33 PALM BEACH 12.449 11.682 42.035 3.376 3.598

34 PINELLAS 4.338 4.235 12.077 2.784 2.852

35 SAINT JOHNS 1.624 1.543 6.298 3.878 4.081

36 SANTA ROSA 2.236 2.119 9.587 4.287 4.524

37 SEMINOLE 3.707 3.641 8.409 2.269 2.310

38 TAYLOR 0.860 0.823 2.784 3.239 3.382

39 VOLUSIA 3.424 3.364 13.556 3.959 4.030

40 WAKULLA 2.429 2.285 9.561 3.936 4.184

Location
Mobile Homes / 

Masonry Owners
County

Mobile homes / Frame 

Owners

Loss Cost per Policy Type
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

1 BAY 3.290 0.177 0.674 0.172 1.000 0.054 0.205 0.052

2 BREVARD 4.263 0.131 0.420 0.087 1.000 0.031 0.099 0.020

3 BREVARD 4.061 0.125 0.379 0.073 1.000 0.031 0.093 0.018

4 BROWARD 7.878 0.220 1.093 0.264 1.000 0.028 0.139 0.034

5 BROWARD 12.565 0.320 2.366 0.687 1.000 0.026 0.188 0.055

6 CITRUS 3.087 0.092 0.304 0.044 1.000 0.030 0.098 0.014

7 CLAY 0.815 0.050 0.117 0.022 1.000 0.061 0.143 0.027

8 COLLIER 5.402 0.196 0.605 0.115 1.000 0.036 0.112 0.021

9 COLUMBIA 0.679 0.039 0.091 0.016 1.000 0.058 0.134 0.024

10 DIXIE 2.317 0.128 0.460 0.114 1.000 0.055 0.199 0.049

11 DUVAL 1.871 0.096 0.303 0.088 1.000 0.051 0.162 0.047

12 FRANKLIN 4.420 0.213 1.019 0.278 1.000 0.048 0.231 0.063

13 GLADES 4.849 0.162 0.456 0.089 1.000 0.033 0.094 0.018

14 HAMILTON 0.584 0.034 0.081 0.014 1.000 0.058 0.139 0.024

15 HILLSBOROUGH 3.853 0.127 0.433 0.075 1.000 0.033 0.112 0.020

16 HERNANDO 3.386 0.107 0.282 0.053 1.000 0.032 0.083 0.016

17 HOLMES 1.157 0.070 0.167 0.031 1.000 0.061 0.144 0.027

18 INDIAN RIVER 8.992 0.274 1.675 0.473 1.000 0.030 0.186 0.053

19 JACKSON 0.937 0.056 0.133 0.024 1.000 0.059 0.142 0.025

20 LEE 4.997 0.180 0.516 0.103 1.000 0.036 0.103 0.021

21 LEON 0.902 0.053 0.129 0.024 1.000 0.059 0.144 0.027

22 MARION 1.534 0.077 0.116 0.024 1.000 0.050 0.075 0.015

23 MARTIN 5.280 0.158 0.646 0.104 1.000 0.030 0.122 0.020

24 MARTIN 10.956 0.286 2.203 0.607 1.000 0.026 0.201 0.055

25 MIAMI‐DADE 6.841 0.197 0.868 0.194 1.000 0.029 0.127 0.028

26 MIAMI‐DADE 9.680 0.264 1.537 0.411 1.000 0.027 0.159 0.042

27 MONROE 10.488 0.308 2.294 0.528 1.000 0.029 0.219 0.050

28 MONROE 15.665 0.416 3.885 1.026 1.000 0.027 0.248 0.066

29 OKALOOSA 2.521 0.154 0.462 0.108 1.000 0.061 0.183 0.043

30 OSCEOLA 1.865 0.095 0.142 0.030 1.000 0.051 0.076 0.016

31 OSCEOLA 2.412 0.130 0.190 0.042 1.000 0.054 0.079 0.018

32 PALM BEACH 6.415 0.191 0.852 0.160 1.000 0.030 0.133 0.025

33 PALM BEACH 9.987 0.278 1.744 0.440 1.000 0.028 0.175 0.044

34 PINELLAS 3.732 0.109 0.434 0.063 1.000 0.029 0.116 0.017

35 SAINT JOHNS 1.286 0.080 0.214 0.044 1.000 0.062 0.166 0.034

36 SANTA ROSA 1.760 0.114 0.299 0.063 1.000 0.065 0.170 0.036

37 SEMINOLE 3.239 0.092 0.332 0.043 1.000 0.028 0.103 0.013

38 TAYLOR 0.691 0.043 0.107 0.019 1.000 0.062 0.155 0.027

39 VOLUSIA 3.001 0.118 0.240 0.065 1.000 0.039 0.080 0.022
40 WAKULLA 1.896 0.113 0.343 0.077 1.000 0.059 0.181 0.041

Ratios Relative to Dominant Coverage

Frame Owners

Construction / 

Policy
County

Loss Cost per Coverage
Location
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 3.053 0.177 0.591 0.150 1.000 0.058 0.194 0.049

2 BREVARD 4.201 0.131 0.406 0.084 1.000 0.031 0.097 0.020

3 BREVARD 4.010 0.125 0.369 0.071 1.000 0.031 0.092 0.018

4 BROWARD 7.637 0.220 1.037 0.251 1.000 0.029 0.136 0.033

5 BROWARD 11.941 0.320 2.132 0.617 1.000 0.027 0.179 0.052

6 CITRUS 3.040 0.092 0.298 0.043 1.000 0.030 0.098 0.014

7 CLAY 0.787 0.050 0.108 0.020 1.000 0.063 0.137 0.025

8 COLLIER 5.296 0.196 0.585 0.111 1.000 0.037 0.110 0.021

9 COLUMBIA 0.655 0.039 0.084 0.014 1.000 0.060 0.129 0.022

10 DIXIE 2.166 0.128 0.409 0.100 1.000 0.059 0.189 0.046

11 DUVAL 1.691 0.096 0.223 0.063 1.000 0.057 0.132 0.037

12 FRANKLIN 4.060 0.213 0.876 0.238 1.000 0.052 0.216 0.059

13 GLADES 4.747 0.162 0.441 0.086 1.000 0.034 0.093 0.018

14 HAMILTON 0.563 0.034 0.075 0.013 1.000 0.060 0.134 0.023

15 HILLSBOROUGH 3.792 0.127 0.422 0.073 1.000 0.034 0.111 0.019

16 HERNANDO 3.328 0.107 0.274 0.052 1.000 0.032 0.082 0.015

17 HOLMES 1.107 0.070 0.155 0.028 1.000 0.063 0.140 0.026

18 INDIAN RIVER 8.521 0.274 1.501 0.421 1.000 0.032 0.176 0.049

19 JACKSON 0.900 0.056 0.123 0.021 1.000 0.062 0.137 0.024

20 LEE 4.875 0.180 0.501 0.101 1.000 0.037 0.103 0.021

21 LEON 0.866 0.053 0.120 0.022 1.000 0.062 0.138 0.025

22 MARION 1.498 0.077 0.112 0.023 1.000 0.051 0.075 0.015

23 MARTIN 5.056 0.158 0.617 0.100 1.000 0.031 0.122 0.020

24 MARTIN 10.294 0.286 1.917 0.516 1.000 0.028 0.186 0.050

25 MIAMI‐DADE 6.663 0.197 0.837 0.188 1.000 0.030 0.126 0.028

26 MIAMI‐DADE 9.327 0.264 1.437 0.384 1.000 0.028 0.154 0.041

27 MONROE 9.947 0.308 2.102 0.474 1.000 0.031 0.211 0.048

28 MONROE 14.597 0.416 3.431 0.882 1.000 0.029 0.235 0.060

29 OKALOOSA 2.375 0.154 0.423 0.099 1.000 0.065 0.178 0.042

30 OSCEOLA 1.819 0.095 0.137 0.028 1.000 0.052 0.076 0.016

31 OSCEOLA 2.349 0.130 0.185 0.041 1.000 0.055 0.079 0.017

32 PALM BEACH 6.134 0.191 0.803 0.150 1.000 0.031 0.131 0.024

33 PALM BEACH 9.458 0.278 1.561 0.386 1.000 0.029 0.165 0.041

34 PINELLAS 3.647 0.109 0.418 0.060 1.000 0.030 0.115 0.017

35 SAINT JOHNS 1.225 0.080 0.198 0.040 1.000 0.065 0.161 0.033

36 SANTA ROSA 1.670 0.114 0.277 0.058 1.000 0.068 0.166 0.035

37 SEMINOLE 3.181 0.092 0.325 0.042 1.000 0.029 0.102 0.013

38 TAYLOR 0.664 0.043 0.100 0.017 1.000 0.064 0.150 0.025

39 VOLUSIA 2.950 0.118 0.233 0.063 1.000 0.040 0.079 0.021
40 WAKULLA 1.791 0.113 0.312 0.069 1.000 0.063 0.174 0.039

Masonry Owners
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 13.284 0.177 2.601 1.003 1.000 0.013 0.196 0.076

2 BREVARD 11.773 0.131 1.857 0.763 1.000 0.011 0.158 0.065

3 BREVARD 10.894 0.125 1.584 0.651 1.000 0.012 0.145 0.060

4 BROWARD 22.901 0.220 4.356 1.855 1.000 0.010 0.190 0.081

5 BROWARD 37.812 0.320 8.856 3.706 1.000 0.008 0.234 0.098

6 CITRUS 7.406 0.092 0.879 0.355 1.000 0.012 0.119 0.048

7 CLAY 2.830 0.050 0.259 0.092 1.000 0.018 0.092 0.032

8 COLLIER 19.504 0.196 3.450 1.442 1.000 0.010 0.177 0.074

9 COLUMBIA 2.114 0.039 0.161 0.053 1.000 0.019 0.076 0.025

10 DIXIE 9.302 0.128 1.682 0.654 1.000 0.014 0.181 0.070

11 DUVAL 6.829 0.096 1.201 0.469 1.000 0.014 0.176 0.069

12 FRANKLIN 16.531 0.213 3.563 1.377 1.000 0.013 0.216 0.083

13 GLADES 14.413 0.162 2.191 0.912 1.000 0.011 0.152 0.063

14 HAMILTON 1.842 0.034 0.149 0.050 1.000 0.018 0.081 0.027

15 HILLSBOROUGH 11.427 0.127 1.807 0.743 1.000 0.011 0.158 0.065

16 HERNANDO 9.153 0.107 1.244 0.517 1.000 0.012 0.136 0.057

17 HOLMES 4.112 0.070 0.413 0.149 1.000 0.017 0.100 0.036

18 INDIAN RIVER 31.520 0.274 7.716 3.109 1.000 0.009 0.245 0.099

19 JACKSON 3.123 0.056 0.264 0.090 1.000 0.018 0.085 0.029

20 LEE 17.441 0.180 2.923 1.224 1.000 0.010 0.168 0.070

21 LEON 3.070 0.053 0.297 0.106 1.000 0.017 0.097 0.035

22 MARION 5.878 0.077 0.582 0.229 1.000 0.013 0.099 0.039

23 MARTIN 14.883 0.158 2.332 0.995 1.000 0.011 0.157 0.067

24 MARTIN 34.244 0.286 8.265 3.431 1.000 0.008 0.241 0.100

25 MIAMI‐DADE 19.828 0.197 3.547 1.518 1.000 0.010 0.179 0.077

26 MIAMI‐DADE 29.675 0.264 6.413 2.708 1.000 0.009 0.216 0.091

27 MONROE 38.896 0.308 9.753 4.153 1.000 0.008 0.251 0.107

28 MONROE 54.215 0.416 14.496 6.123 1.000 0.008 0.267 0.113

29 OKALOOSA 11.170 0.154 2.048 0.796 1.000 0.014 0.183 0.071

30 OSCEOLA 7.506 0.095 0.790 0.320 1.000 0.013 0.105 0.043

31 OSCEOLA 11.071 0.130 1.528 0.631 1.000 0.012 0.138 0.057

32 PALM BEACH 19.118 0.191 3.396 1.448 1.000 0.010 0.178 0.076

33 PALM BEACH 31.714 0.278 7.071 2.971 1.000 0.009 0.223 0.094

34 PINELLAS 9.922 0.109 1.446 0.600 1.000 0.011 0.146 0.060

35 SAINT JOHNS 5.196 0.080 0.735 0.286 1.000 0.015 0.142 0.055

36 SANTA ROSA 7.768 0.114 1.227 0.478 1.000 0.015 0.158 0.061

37 SEMINOLE 7.232 0.092 0.774 0.311 1.000 0.013 0.107 0.043

38 TAYLOR 2.424 0.043 0.234 0.084 1.000 0.018 0.096 0.035

39 VOLUSIA 10.864 0.118 1.828 0.745 1.000 0.011 0.168 0.069
40 WAKULLA 7.713 0.113 1.252 0.483 1.000 0.015 0.162 0.063

Mobile Homes
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 0.000 0.000 1.348 0.344 1.000 0.255

2 BREVARD 0.000 0.000 0.840 0.173 1.000 0.206

3 BREVARD 0.000 0.000 0.759 0.145 1.000 0.192

4 BROWARD 0.000 0.000 2.185 0.529 1.000 0.242

5 BROWARD 0.000 0.000 4.732 1.374 1.000 0.290

6 CITRUS 0.000 0.000 0.608 0.088 1.000 0.144

7 CLAY 0.000 0.000 0.233 0.043 1.000 0.186

8 COLLIER 0.000 0.000 1.210 0.230 1.000 0.190

9 COLUMBIA 0.000 0.000 0.182 0.032 1.000 0.176

10 DIXIE 0.000 0.000 0.920 0.227 1.000 0.247

11 DUVAL 0.000 0.000 0.606 0.176 1.000 0.291

12 FRANKLIN 0.000 0.000 2.038 0.557 1.000 0.273

13 GLADES 0.000 0.000 0.911 0.178 1.000 0.195

14 HAMILTON 0.000 0.000 0.163 0.029 1.000 0.176

15 HILLSBOROUGH 0.000 0.000 0.866 0.151 1.000 0.174

16 HERNANDO 0.000 0.000 0.563 0.107 1.000 0.189

17 HOLMES 0.000 0.000 0.334 0.063 1.000 0.188

18 INDIAN RIVER 0.000 0.000 3.351 0.947 1.000 0.283

19 JACKSON 0.000 0.000 0.266 0.047 1.000 0.178

20 LEE 0.000 0.000 1.031 0.206 1.000 0.200

21 LEON 0.000 0.000 0.259 0.048 1.000 0.187

22 MARION 0.000 0.000 0.232 0.047 1.000 0.204

23 MARTIN 0.000 0.000 1.292 0.208 1.000 0.161

24 MARTIN 0.000 0.000 4.407 1.213 1.000 0.275

25 MIAMI‐DADE 0.000 0.000 1.735 0.388 1.000 0.223

26 MIAMI‐DADE 0.000 0.000 3.074 0.822 1.000 0.267

27 MONROE 0.000 0.000 4.588 1.055 1.000 0.230

28 MONROE 0.000 0.000 7.770 2.052 1.000 0.264

29 OKALOOSA 0.000 0.000 0.925 0.217 1.000 0.235

30 OSCEOLA 0.000 0.000 0.283 0.059 1.000 0.209

31 OSCEOLA 0.000 0.000 0.381 0.085 1.000 0.223

32 PALM BEACH 0.000 0.000 1.703 0.320 1.000 0.188

33 PALM BEACH 0.000 0.000 3.487 0.881 1.000 0.253

34 PINELLAS 0.000 0.000 0.867 0.127 1.000 0.146

35 SAINT JOHNS 0.000 0.000 0.428 0.088 1.000 0.206

36 SANTA ROSA 0.000 0.000 0.597 0.126 1.000 0.211

37 SEMINOLE 0.000 0.000 0.665 0.087 1.000 0.130

38 TAYLOR 0.000 0.000 0.215 0.037 1.000 0.172

39 VOLUSIA 0.000 0.000 0.479 0.129 1.000 0.270
40 WAKULLA 0.000 0.000 0.685 0.154 1.000 0.225

Frame Renters
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 0.000 0.000 1.182 0.300 1.000 0.254

2 BREVARD 0.000 0.000 0.813 0.167 1.000 0.206

3 BREVARD 0.000 0.000 0.738 0.141 1.000 0.192

4 BROWARD 0.000 0.000 2.074 0.501 1.000 0.242

5 BROWARD 0.000 0.000 4.264 1.233 1.000 0.289

6 CITRUS 0.000 0.000 0.595 0.086 1.000 0.144

7 CLAY 0.000 0.000 0.216 0.039 1.000 0.181

8 COLLIER 0.000 0.000 1.169 0.221 1.000 0.189

9 COLUMBIA 0.000 0.000 0.169 0.029 1.000 0.170

10 DIXIE 0.000 0.000 0.817 0.200 1.000 0.245

11 DUVAL 0.000 0.000 0.446 0.126 1.000 0.281

12 FRANKLIN 0.000 0.000 1.751 0.477 1.000 0.272

13 GLADES 0.000 0.000 0.883 0.172 1.000 0.195

14 HAMILTON 0.000 0.000 0.150 0.026 1.000 0.170

15 HILLSBOROUGH 0.000 0.000 0.844 0.147 1.000 0.174

16 HERNANDO 0.000 0.000 0.547 0.103 1.000 0.188

17 HOLMES 0.000 0.000 0.310 0.057 1.000 0.184

18 INDIAN RIVER 0.000 0.000 3.003 0.842 1.000 0.280

19 JACKSON 0.000 0.000 0.246 0.042 1.000 0.173

20 LEE 0.000 0.000 1.002 0.201 1.000 0.201

21 LEON 0.000 0.000 0.240 0.044 1.000 0.182

22 MARION 0.000 0.000 0.225 0.045 1.000 0.202

23 MARTIN 0.000 0.000 1.235 0.200 1.000 0.162

24 MARTIN 0.000 0.000 3.834 1.032 1.000 0.269

25 MIAMI‐DADE 0.000 0.000 1.673 0.375 1.000 0.224

26 MIAMI‐DADE 0.000 0.000 2.873 0.768 1.000 0.267

27 MONROE 0.000 0.000 4.204 0.949 1.000 0.226

28 MONROE 0.000 0.000 6.861 1.765 1.000 0.257

29 OKALOOSA 0.000 0.000 0.847 0.199 1.000 0.235

30 OSCEOLA 0.000 0.000 0.275 0.057 1.000 0.207

31 OSCEOLA 0.000 0.000 0.370 0.082 1.000 0.222

32 PALM BEACH 0.000 0.000 1.606 0.301 1.000 0.187

33 PALM BEACH 0.000 0.000 3.121 0.772 1.000 0.247

34 PINELLAS 0.000 0.000 0.837 0.120 1.000 0.144

35 SAINT JOHNS 0.000 0.000 0.395 0.080 1.000 0.204

36 SANTA ROSA 0.000 0.000 0.553 0.116 1.000 0.210

37 SEMINOLE 0.000 0.000 0.650 0.085 1.000 0.131

38 TAYLOR 0.000 0.000 0.199 0.033 1.000 0.167

39 VOLUSIA 0.000 0.000 0.466 0.126 1.000 0.271
40 WAKULLA 0.000 0.000 0.624 0.139 1.000 0.223

Masonry Renters
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 0.329 0.000 1.348 0.344 0.244 1.000 0.255

2 BREVARD 0.426 0.000 0.840 0.173 0.507 1.000 0.206

3 BREVARD 0.406 0.000 0.759 0.145 0.535 1.000 0.192

4 BROWARD 0.788 0.000 2.185 0.529 0.360 1.000 0.242

5 BROWARD 1.257 0.000 4.732 1.374 0.266 1.000 0.290

6 CITRUS 0.309 0.000 0.608 0.088 0.508 1.000 0.144

7 CLAY 0.082 0.000 0.233 0.043 0.349 1.000 0.186

8 COLLIER 0.540 0.000 1.210 0.230 0.447 1.000 0.190

9 COLUMBIA 0.068 0.000 0.182 0.032 0.373 1.000 0.176

10 DIXIE 0.232 0.000 0.920 0.227 0.252 1.000 0.247

11 DUVAL 0.187 0.000 0.606 0.176 0.308 1.000 0.291

12 FRANKLIN 0.442 0.000 2.038 0.557 0.217 1.000 0.273

13 GLADES 0.485 0.000 0.911 0.178 0.532 1.000 0.195

14 HAMILTON 0.058 0.000 0.163 0.029 0.359 1.000 0.176

15 HILLSBOROUGH 0.385 0.000 0.866 0.151 0.445 1.000 0.174

16 HERNANDO 0.339 0.000 0.563 0.107 0.601 1.000 0.189

17 HOLMES 0.116 0.000 0.334 0.063 0.346 1.000 0.188

18 INDIAN RIVER 0.899 0.000 3.351 0.947 0.268 1.000 0.283

19 JACKSON 0.094 0.000 0.266 0.047 0.352 1.000 0.178

20 LEE 0.500 0.000 1.031 0.206 0.485 1.000 0.200

21 LEON 0.090 0.000 0.259 0.048 0.348 1.000 0.187

22 MARION 0.153 0.000 0.232 0.047 0.662 1.000 0.204

23 MARTIN 0.528 0.000 1.292 0.208 0.409 1.000 0.161

24 MARTIN 1.096 0.000 4.407 1.213 0.249 1.000 0.275

25 MIAMI‐DADE 0.684 0.000 1.735 0.388 0.394 1.000 0.223

26 MIAMI‐DADE 0.968 0.000 3.074 0.822 0.315 1.000 0.267

27 MONROE 1.049 0.000 4.588 1.055 0.229 1.000 0.230

28 MONROE 1.567 0.000 7.770 2.052 0.202 1.000 0.264

29 OKALOOSA 0.252 0.000 0.925 0.217 0.273 1.000 0.235

30 OSCEOLA 0.186 0.000 0.283 0.059 0.658 1.000 0.209

31 OSCEOLA 0.241 0.000 0.381 0.085 0.633 1.000 0.223

32 PALM BEACH 0.642 0.000 1.703 0.320 0.377 1.000 0.188

33 PALM BEACH 0.999 0.000 3.487 0.881 0.286 1.000 0.253

34 PINELLAS 0.373 0.000 0.867 0.127 0.430 1.000 0.146

35 SAINT JOHNS 0.129 0.000 0.428 0.088 0.301 1.000 0.206

36 SANTA ROSA 0.176 0.000 0.597 0.126 0.295 1.000 0.211

37 SEMINOLE 0.324 0.000 0.665 0.087 0.487 1.000 0.130

38 TAYLOR 0.069 0.000 0.215 0.037 0.322 1.000 0.172

39 VOLUSIA 0.300 0.000 0.479 0.129 0.626 1.000 0.270
40 WAKULLA 0.190 0.000 0.685 0.154 0.277 1.000 0.225

Frame Condo Unit
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 0.305 0.000 1.182 0.300 0.258 1.000 0.254

2 BREVARD 0.420 0.000 0.813 0.167 0.517 1.000 0.206

3 BREVARD 0.401 0.000 0.738 0.141 0.543 1.000 0.192

4 BROWARD 0.764 0.000 2.074 0.501 0.368 1.000 0.242

5 BROWARD 1.194 0.000 4.264 1.233 0.280 1.000 0.289

6 CITRUS 0.304 0.000 0.595 0.086 0.511 1.000 0.144

7 CLAY 0.079 0.000 0.216 0.039 0.365 1.000 0.181

8 COLLIER 0.530 0.000 1.169 0.221 0.453 1.000 0.189

9 COLUMBIA 0.066 0.000 0.169 0.029 0.389 1.000 0.170

10 DIXIE 0.217 0.000 0.817 0.200 0.265 1.000 0.245

11 DUVAL 0.169 0.000 0.446 0.126 0.379 1.000 0.281

12 FRANKLIN 0.406 0.000 1.751 0.477 0.232 1.000 0.272

13 GLADES 0.475 0.000 0.883 0.172 0.538 1.000 0.195

14 HAMILTON 0.056 0.000 0.150 0.026 0.374 1.000 0.170

15 HILLSBOROUGH 0.379 0.000 0.844 0.147 0.449 1.000 0.174

16 HERNANDO 0.333 0.000 0.547 0.103 0.608 1.000 0.188

17 HOLMES 0.111 0.000 0.310 0.057 0.357 1.000 0.184

18 INDIAN RIVER 0.852 0.000 3.003 0.842 0.284 1.000 0.280

19 JACKSON 0.090 0.000 0.246 0.042 0.366 1.000 0.173

20 LEE 0.488 0.000 1.002 0.201 0.487 1.000 0.201

21 LEON 0.087 0.000 0.240 0.044 0.361 1.000 0.182

22 MARION 0.150 0.000 0.225 0.045 0.667 1.000 0.202

23 MARTIN 0.506 0.000 1.235 0.200 0.409 1.000 0.162

24 MARTIN 1.029 0.000 3.834 1.032 0.269 1.000 0.269

25 MIAMI‐DADE 0.666 0.000 1.673 0.375 0.398 1.000 0.224

26 MIAMI‐DADE 0.933 0.000 2.873 0.768 0.325 1.000 0.267

27 MONROE 0.995 0.000 4.204 0.949 0.237 1.000 0.226

28 MONROE 1.460 0.000 6.861 1.765 0.213 1.000 0.257

29 OKALOOSA 0.237 0.000 0.847 0.199 0.280 1.000 0.235

30 OSCEOLA 0.182 0.000 0.275 0.057 0.662 1.000 0.207

31 OSCEOLA 0.235 0.000 0.370 0.082 0.635 1.000 0.222

32 PALM BEACH 0.613 0.000 1.606 0.301 0.382 1.000 0.187

33 PALM BEACH 0.946 0.000 3.121 0.772 0.303 1.000 0.247

34 PINELLAS 0.365 0.000 0.837 0.120 0.436 1.000 0.144

35 SAINT JOHNS 0.123 0.000 0.395 0.080 0.310 1.000 0.204

36 SANTA ROSA 0.167 0.000 0.553 0.116 0.302 1.000 0.210

37 SEMINOLE 0.318 0.000 0.650 0.085 0.489 1.000 0.131

38 TAYLOR 0.066 0.000 0.199 0.033 0.333 1.000 0.167

39 VOLUSIA 0.295 0.000 0.466 0.126 0.633 1.000 0.271
40 WAKULLA 0.179 0.000 0.624 0.139 0.287 1.000 0.223

Masonry Condo 

Unit
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Form A‐6: Logical Relationship to Risk  ‐ Coverage

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D  Coverage A Coverage B  Coverage C  Coverage D 

Ratios Relative to Dominant CoverageConstruction / 

Policy
County

Loss Cost per Coverage
Location

1 BAY 14.158 0.000 0.300 0.000 1.000 0.021 0.000

2 BREVARD 9.296 0.000 0.181 0.000 1.000 0.019 0.000

3 BREVARD 8.263 0.000 0.157 0.000 1.000 0.019 0.000

4 BROWARD 17.673 0.000 0.356 0.000 1.000 0.020 0.000

5 BROWARD 29.824 0.000 0.648 0.000 1.000 0.022 0.000

6 CITRUS 4.920 0.000 0.089 0.000 1.000 0.018 0.000

7 CLAY 2.182 0.000 0.038 0.000 1.000 0.017 0.000

8 COLLIER 15.220 0.000 0.301 0.000 1.000 0.020 0.000

9 COLUMBIA 1.528 0.000 0.026 0.000 1.000 0.017 0.000

10 DIXIE 7.490 0.000 0.152 0.000 1.000 0.020 0.000

11 DUVAL 6.527 0.000 0.134 0.000 1.000 0.020 0.000

12 FRANKLIN 16.075 0.000 0.349 0.000 1.000 0.022 0.000

13 GLADES 11.064 0.000 0.211 0.000 1.000 0.019 0.000

14 HAMILTON 1.300 0.000 0.022 0.000 1.000 0.017 0.000

15 HILLSBOROUGH 7.874 0.000 0.152 0.000 1.000 0.019 0.000

16 HERNANDO 7.033 0.000 0.131 0.000 1.000 0.019 0.000

17 HOLMES 4.007 0.000 0.072 0.000 1.000 0.018 0.000

18 INDIAN RIVER 23.889 0.000 0.536 0.000 1.000 0.022 0.000

19 JACKSON 2.657 0.000 0.046 0.000 1.000 0.017 0.000

20 LEE 12.522 0.000 0.243 0.000 1.000 0.019 0.000

21 LEON 2.273 0.000 0.040 0.000 1.000 0.018 0.000

22 MARION 3.846 0.000 0.067 0.000 1.000 0.017 0.000

23 MARTIN 11.456 0.000 0.219 0.000 1.000 0.019 0.000

24 MARTIN 26.891 0.000 0.595 0.000 1.000 0.022 0.000

25 MIAMI‐DADE 16.611 0.000 0.328 0.000 1.000 0.020 0.000

26 MIAMI‐DADE 24.333 0.000 0.512 0.000 1.000 0.021 0.000

27 MONROE 32.833 0.000 0.725 0.000 1.000 0.022 0.000

28 MONROE 38.835 0.000 0.875 0.000 1.000 0.023 0.000

29 OKALOOSA 12.517 0.000 0.259 0.000 1.000 0.021 0.000

30 OSCEOLA 5.344 0.000 0.094 0.000 1.000 0.018 0.000

31 OSCEOLA 7.629 0.000 0.142 0.000 1.000 0.019 0.000

32 PALM BEACH 15.008 0.000 0.297 0.000 1.000 0.020 0.000

33 PALM BEACH 25.420 0.000 0.544 0.000 1.000 0.021 0.000

34 PINELLAS 7.800 0.000 0.148 0.000 1.000 0.019 0.000

35 SAINT JOHNS 5.114 0.000 0.098 0.000 1.000 0.019 0.000

36 SANTA ROSA 7.813 0.000 0.154 0.000 1.000 0.020 0.000

37 SEMINOLE 4.901 0.000 0.087 0.000 1.000 0.018 0.000

38 TAYLOR 2.085 0.000 0.037 0.000 1.000 0.018 0.000

39 VOLUSIA 8.553 0.000 0.169 0.000 1.000 0.020 0.000
40 WAKULLA 6.745 0.000 0.135 0.000 1.000 0.020 0.000

Commercial 

Residential
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

1 BAY 4.815 3.028 2.073 1.000 0.629 0.430

2 BREVARD 5.725 3.470 1.901 1.000 0.606 0.332

3 BREVARD 5.403 3.309 1.848 1.000 0.612 0.342

4 BROWARD 11.913 2.858 2.858 1.000 0.240 0.240

5 BROWARD 20.349 4.209 4.218 1.000 0.207 0.207

6 CITRUS 4.262 2.518 1.466 1.000 0.591 0.344

7 CLAY 1.112 0.875 0.778 1.000 0.787 0.699

8 COLLIER 8.343 4.914 2.603 1.000 0.589 0.312

9 COLUMBIA 0.862 0.711 0.648 1.000 0.826 0.752

10 DIXIE 3.387 2.219 1.592 1.000 0.655 0.470

11 DUVAL 2.540 1.689 1.221 1.000 0.665 0.481

12 FRANKLIN 6.838 4.146 2.552 1.000 0.606 0.373

13 GLADES 7.552 4.293 2.376 1.000 0.568 0.315

14 HAMILTON 0.745 0.608 0.553 1.000 0.816 0.743

15 HILLSBOROUGH 5.491 3.300 1.829 1.000 0.601 0.333

16 HERNANDO 4.974 2.871 1.621 1.000 0.577 0.326

17 HOLMES 1.530 1.162 1.020 1.000 0.759 0.667

18 INDIAN RIVER 15.184 8.798 4.284 1.000 0.579 0.282

19 JACKSON 1.209 0.963 0.864 1.000 0.796 0.714

20 LEE 8.367 4.634 2.469 1.000 0.554 0.295

21 LEON 1.183 0.916 0.812 1.000 0.774 0.687

22 MARION 3.595 2.173 1.285 1.000 0.605 0.357

23 MARTIN 6.902 4.135 2.229 1.000 0.599 0.323

24 MARTIN 15.744 8.976 4.142 1.000 0.570 0.263

25 MIAMI‐DADE 10.148 2.546 2.544 1.000 0.251 0.251

26 MIAMI‐DADE 15.261 3.248 3.250 1.000 0.213 0.213

27 MONROE 14.227 7.488 3.837 1.000 0.526 0.270

28 MONROE 21.871 12.041 6.590 1.000 0.551 0.301

29 OKALOOSA 3.669 2.364 1.749 1.000 0.644 0.477

30 OSCEOLA 4.456 2.662 1.545 1.000 0.597 0.347

31 OSCEOLA 6.022 3.484 1.966 1.000 0.579 0.326

32 PALM BEACH 8.550 5.010 2.593 1.000 0.586 0.303

33 PALM BEACH 14.030 7.971 3.762 1.000 0.568 0.268

34 PINELLAS 4.656 2.843 1.606 1.000 0.611 0.345

35 SAINT JOHNS 1.763 1.281 1.054 1.000 0.727 0.598

36 SANTA ROSA 2.451 1.695 1.358 1.000 0.692 0.554

37 SEMINOLE 4.306 2.575 1.501 1.000 0.598 0.349

38 TAYLOR 0.883 0.721 0.644 1.000 0.817 0.730

39 VOLUSIA 5.191 3.115 1.686 1.000 0.600 0.325

40 WAKULLA 2.680 1.840 1.423 1.000 0.687 0.531

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Frame Owners

Construction / 

Policy
CountyLocation
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

1 BAY 4.490 2.883 2.032 1.000 0.642 0.452

2 BREVARD 5.635 3.408 1.859 1.000 0.605 0.330

3 BREVARD 5.327 3.254 1.807 1.000 0.611 0.339

4 BROWARD 11.592 2.799 2.800 1.000 0.241 0.242

5 BROWARD 19.521 3.894 3.909 1.000 0.199 0.200

6 CITRUS 4.199 2.474 1.422 1.000 0.589 0.339

7 CLAY 1.055 0.847 0.769 1.000 0.803 0.729

8 COLLIER 8.210 4.815 2.522 1.000 0.586 0.307

9 COLUMBIA 0.819 0.690 0.641 1.000 0.842 0.783

10 DIXIE 3.162 2.116 1.561 1.000 0.669 0.494

11 DUVAL 2.371 1.610 1.201 1.000 0.679 0.506

12 FRANKLIN 6.311 3.901 2.477 1.000 0.618 0.393

13 GLADES 7.415 4.196 2.299 1.000 0.566 0.310

14 HAMILTON 0.708 0.591 0.548 1.000 0.834 0.774

15 HILLSBOROUGH 5.417 3.250 1.781 1.000 0.600 0.329

16 HERNANDO 4.913 2.822 1.563 1.000 0.574 0.318

17 HOLMES 1.446 1.123 1.008 1.000 0.776 0.697

18 INDIAN RIVER 14.365 8.386 4.040 1.000 0.584 0.281

19 JACKSON 1.145 0.933 0.854 1.000 0.814 0.746

20 LEE 8.170 4.490 2.415 1.000 0.550 0.296

21 LEON 1.121 0.887 0.803 1.000 0.792 0.717

22 MARION 3.538 2.130 1.247 1.000 0.602 0.352

23 MARTIN 6.647 3.925 2.156 1.000 0.591 0.324

24 MARTIN 14.916 8.528 3.944 1.000 0.572 0.264

25 MIAMI‐DADE 9.911 2.507 2.507 1.000 0.253 0.253

26 MIAMI‐DADE 14.792 3.152 3.157 1.000 0.213 0.213

27 MONROE 13.526 7.135 3.482 1.000 0.527 0.257

28 MONROE 20.292 11.104 5.508 1.000 0.547 0.271

29 OKALOOSA 3.456 2.272 1.727 1.000 0.657 0.500

30 OSCEOLA 4.378 2.604 1.500 1.000 0.595 0.343

31 OSCEOLA 5.915 3.407 1.906 1.000 0.576 0.322

32 PALM BEACH 8.231 4.764 2.505 1.000 0.579 0.304

33 PALM BEACH 13.399 7.588 3.605 1.000 0.566 0.269

34 PINELLAS 4.572 2.771 1.547 1.000 0.606 0.338

35 SAINT JOHNS 1.667 1.237 1.042 1.000 0.742 0.625

36 SANTA ROSA 2.313 1.632 1.341 1.000 0.706 0.580

37 SEMINOLE 4.230 2.520 1.458 1.000 0.596 0.345

38 TAYLOR 0.838 0.700 0.638 1.000 0.835 0.761

39 VOLUSIA 5.115 3.059 1.639 1.000 0.598 0.320

40 WAKULLA 2.522 1.770 1.405 1.000 0.702 0.557

Masonry Owners
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

Year Built 

1974

Year Built 

1992

Year Built 

2004

Year Built 

1974

Year Built 

1992

Year Built 

2004

1 BAY 27.285 27.285 2.953 1.000 1.000 0.108

2 BREVARD 17.431 17.431 2.134 1.000 1.000 0.122

3 BREVARD 15.882 15.882 2.049 1.000 1.000 0.129

4 BROWARD 33.923 33.923 3.300 1.000 1.000 0.097

5 BROWARD 58.492 58.492 6.057 1.000 1.000 0.104

6 CITRUS 10.410 10.410 1.579 1.000 1.000 0.152

7 CLAY 4.895 4.895 0.932 1.000 1.000 0.190

8 COLLIER 28.441 28.441 2.782 1.000 1.000 0.098

9 COLUMBIA 3.533 3.533 0.759 1.000 1.000 0.215

10 DIXIE 18.679 18.679 2.217 1.000 1.000 0.119

11 DUVAL 13.591 13.591 1.695 1.000 1.000 0.125

12 FRANKLIN 35.817 35.817 3.693 1.000 1.000 0.103

13 GLADES 21.220 21.220 2.578 1.000 1.000 0.122

14 HAMILTON 3.108 3.108 0.649 1.000 1.000 0.209

15 HILLSBOROUGH 16.928 16.928 2.063 1.000 1.000 0.122

16 HERNANDO 13.200 13.200 1.740 1.000 1.000 0.132

17 HOLMES 7.269 7.269 1.258 1.000 1.000 0.173

18 INDIAN RIVER 51.035 51.035 6.518 1.000 1.000 0.128

19 JACKSON 5.336 5.336 1.041 1.000 1.000 0.195

20 LEE 25.148 25.148 2.614 1.000 1.000 0.104

21 LEON 5.370 5.370 0.981 1.000 1.000 0.183

22 MARION 8.030 8.030 1.375 1.000 1.000 0.171

23 MARTIN 21.183 21.183 2.418 1.000 1.000 0.114

24 MARTIN 53.269 53.269 5.842 1.000 1.000 0.110

25 MIAMI‐DADE 29.022 29.022 2.810 1.000 1.000 0.097

26 MIAMI‐DADE 45.240 45.240 3.988 1.000 1.000 0.088

27 MONROE 61.396 61.396 5.665 1.000 1.000 0.092

28 MONROE 86.186 86.186 10.876 1.000 1.000 0.126

29 OKALOOSA 22.729 22.729 2.345 1.000 1.000 0.103

30 OSCEOLA 10.365 10.365 1.663 1.000 1.000 0.160

31 OSCEOLA 15.995 15.995 2.125 1.000 1.000 0.133

32 PALM BEACH 27.906 27.906 2.881 1.000 1.000 0.103

33 PALM BEACH 48.561 48.561 4.818 1.000 1.000 0.099

34 PINELLAS 13.908 13.908 1.700 1.000 1.000 0.122

35 SAINT JOHNS 9.888 9.888 1.340 1.000 1.000 0.136

36 SANTA ROSA 15.238 15.238 1.783 1.000 1.000 0.117

37 SEMINOLE 10.003 10.003 1.614 1.000 1.000 0.161

38 TAYLOR 4.237 4.237 0.779 1.000 1.000 0.184

39 VOLUSIA 16.289 16.289 1.902 1.000 1.000 0.117

40 WAKULLA 15.135 15.135 1.864 1.000 1.000 0.123

Loss Cost per Year Built Ratios Relative to 1974 Year Built

County

Mobile Homes

Construction / 

Policy
Location
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

1 BAY 1.738 0.910 0.522 1.000 0.524 0.300

2 BREVARD 0.858 0.525 0.364 1.000 0.611 0.424

3 BREVARD 0.734 0.472 0.351 1.000 0.643 0.477

4 BROWARD 2.813 0.571 0.572 1.000 0.203 0.204

5 BROWARD 6.928 1.085 1.090 1.000 0.157 0.157

6 CITRUS 0.492 0.323 0.269 1.000 0.657 0.547

7 CLAY 0.269 0.192 0.161 1.000 0.715 0.597

8 COLLIER 1.313 0.759 0.507 1.000 0.578 0.386

9 COLUMBIA 0.197 0.151 0.129 1.000 0.765 0.654

10 DIXIE 1.173 0.643 0.392 1.000 0.548 0.334

11 DUVAL 0.875 0.486 0.297 1.000 0.556 0.340

12 FRANKLIN 2.764 1.395 0.697 1.000 0.505 0.252

13 GLADES 1.065 0.603 0.446 1.000 0.566 0.419

14 HAMILTON 0.172 0.130 0.111 1.000 0.752 0.641

15 HILLSBOROUGH 0.811 0.489 0.352 1.000 0.604 0.434

16 HERNANDO 0.632 0.385 0.301 1.000 0.610 0.477

17 HOLMES 0.373 0.264 0.224 1.000 0.708 0.600

18 INDIAN RIVER 4.922 2.591 1.261 1.000 0.526 0.256

19 JACKSON 0.284 0.213 0.183 1.000 0.751 0.644

20 LEE 1.270 0.674 0.478 1.000 0.531 0.377

21 LEON 0.288 0.204 0.171 1.000 0.709 0.595

22 MARION 0.387 0.275 0.233 1.000 0.711 0.602

23 MARTIN 1.002 0.600 0.426 1.000 0.598 0.425

24 MARTIN 5.034 2.561 1.150 1.000 0.509 0.229

25 MIAMI‐DADE 2.097 0.497 0.498 1.000 0.237 0.237

26 MIAMI‐DADE 4.334 0.677 0.679 1.000 0.156 0.157

27 MONROE 4.194 2.153 1.077 1.000 0.513 0.257

28 MONROE 7.914 4.460 2.634 1.000 0.563 0.333

29 OKALOOSA 1.173 0.634 0.413 1.000 0.541 0.352

30 OSCEOLA 0.486 0.338 0.285 1.000 0.695 0.586

31 OSCEOLA 0.779 0.469 0.365 1.000 0.603 0.469

32 PALM BEACH 1.483 0.818 0.511 1.000 0.552 0.345

33 PALM BEACH 3.763 1.906 0.911 1.000 0.507 0.242

34 PINELLAS 0.622 0.403 0.304 1.000 0.648 0.489

35 SAINT JOHNS 0.492 0.311 0.233 1.000 0.631 0.474

36 SANTA ROSA 0.697 0.423 0.318 1.000 0.607 0.456

37 SEMINOLE 0.477 0.329 0.275 1.000 0.688 0.576

38 TAYLOR 0.215 0.161 0.135 1.000 0.751 0.628

39 VOLUSIA 0.842 0.497 0.327 1.000 0.591 0.388

40 WAKULLA 0.832 0.483 0.327 1.000 0.580 0.392

Ratios Relative to 1980 Year Built

County

Loss Cost per Year Built

Frame Renters

Construction / 

Policy
Location
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

1 BAY 1.604 0.843 0.475 1.000 0.525 0.296

2 BREVARD 0.838 0.513 0.352 1.000 0.612 0.419

3 BREVARD 0.719 0.461 0.338 1.000 0.641 0.471

4 BROWARD 2.744 0.539 0.540 1.000 0.196 0.197

5 BROWARD 6.591 0.844 0.853 1.000 0.128 0.129

6 CITRUS 0.481 0.313 0.259 1.000 0.651 0.539

7 CLAY 0.243 0.174 0.149 1.000 0.716 0.612

8 COLLIER 1.287 0.745 0.490 1.000 0.578 0.381

9 COLUMBIA 0.176 0.135 0.119 1.000 0.769 0.676

10 DIXIE 1.077 0.592 0.355 1.000 0.549 0.330

11 DUVAL 0.800 0.444 0.266 1.000 0.555 0.332

12 FRANKLIN 2.516 1.280 0.616 1.000 0.509 0.245

13 GLADES 1.043 0.589 0.431 1.000 0.564 0.413

14 HAMILTON 0.154 0.117 0.102 1.000 0.755 0.661

15 HILLSBOROUGH 0.789 0.476 0.339 1.000 0.604 0.430

16 HERNANDO 0.620 0.376 0.291 1.000 0.606 0.469

17 HOLMES 0.339 0.239 0.207 1.000 0.706 0.612

18 INDIAN RIVER 4.470 2.432 1.143 1.000 0.544 0.256

19 JACKSON 0.256 0.192 0.169 1.000 0.752 0.662

20 LEE 1.245 0.661 0.463 1.000 0.531 0.371

21 LEON 0.261 0.185 0.159 1.000 0.708 0.608

22 MARION 0.379 0.267 0.225 1.000 0.704 0.593

23 MARTIN 0.981 0.586 0.411 1.000 0.598 0.419

24 MARTIN 4.581 2.380 1.039 1.000 0.519 0.227

25 MIAMI‐DADE 2.064 0.478 0.479 1.000 0.232 0.232

26 MIAMI‐DADE 4.204 0.622 0.625 1.000 0.148 0.149

27 MONROE 3.878 1.975 0.838 1.000 0.509 0.216

28 MONROE 6.964 3.791 1.734 1.000 0.544 0.249

29 OKALOOSA 1.102 0.593 0.386 1.000 0.538 0.350

30 OSCEOLA 0.475 0.327 0.274 1.000 0.688 0.577

31 OSCEOLA 0.763 0.458 0.352 1.000 0.600 0.462

32 PALM BEACH 1.438 0.798 0.493 1.000 0.555 0.343

33 PALM BEACH 3.506 1.807 0.845 1.000 0.515 0.241

34 PINELLAS 0.609 0.393 0.293 1.000 0.645 0.482

35 SAINT JOHNS 0.454 0.286 0.216 1.000 0.629 0.476

36 SANTA ROSA 0.649 0.391 0.296 1.000 0.602 0.456

37 SEMINOLE 0.467 0.319 0.265 1.000 0.682 0.567

38 TAYLOR 0.193 0.146 0.125 1.000 0.754 0.645

39 VOLUSIA 0.817 0.485 0.315 1.000 0.593 0.385

40 WAKULLA 0.771 0.447 0.303 1.000 0.579 0.393

Masonry Renters
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

1 BAY 2.115 1.150 0.686 1.000 0.544 0.324

2 BREVARD 1.375 0.832 0.523 1.000 0.605 0.380

3 BREVARD 1.225 0.767 0.505 1.000 0.626 0.412

4 BROWARD 3.841 0.806 0.808 1.000 0.210 0.210

5 BROWARD 8.585 1.420 1.425 1.000 0.165 0.166

6 CITRUS 0.884 0.549 0.393 1.000 0.621 0.444

7 CLAY 0.362 0.265 0.225 1.000 0.733 0.623

8 COLLIER 2.062 1.193 0.722 1.000 0.578 0.350

9 COLUMBIA 0.269 0.210 0.183 1.000 0.781 0.680

10 DIXIE 1.440 0.820 0.518 1.000 0.569 0.360

11 DUVAL 1.075 0.621 0.395 1.000 0.577 0.367

12 FRANKLIN 3.288 1.719 0.896 1.000 0.523 0.272

13 GLADES 1.751 0.986 0.645 1.000 0.563 0.369

14 HAMILTON 0.235 0.181 0.157 1.000 0.769 0.668

15 HILLSBOROUGH 1.307 0.782 0.505 1.000 0.599 0.386

16 HERNANDO 1.087 0.643 0.437 1.000 0.591 0.402

17 HOLMES 0.500 0.360 0.307 1.000 0.720 0.615

18 INDIAN RIVER 6.167 3.314 1.599 1.000 0.537 0.259

19 JACKSON 0.385 0.293 0.255 1.000 0.761 0.661

20 LEE 2.026 1.086 0.683 1.000 0.536 0.337

21 LEON 0.386 0.280 0.239 1.000 0.725 0.618

22 MARION 0.720 0.471 0.342 1.000 0.655 0.476

23 MARTIN 1.626 0.967 0.612 1.000 0.595 0.376

24 MARTIN 6.328 3.302 1.478 1.000 0.522 0.234

25 MIAMI‐DADE 2.988 0.707 0.708 1.000 0.237 0.237

26 MIAMI‐DADE 5.617 0.941 0.944 1.000 0.168 0.168

27 MONROE 5.377 2.764 1.376 1.000 0.514 0.256

28 MONROE 9.664 5.399 3.120 1.000 0.559 0.323

29 OKALOOSA 1.466 0.824 0.552 1.000 0.562 0.377

30 OSCEOLA 0.897 0.577 0.415 1.000 0.643 0.463

31 OSCEOLA 1.329 0.781 0.531 1.000 0.588 0.399

32 PALM BEACH 2.244 1.259 0.726 1.000 0.561 0.323

33 PALM BEACH 4.950 2.580 1.213 1.000 0.521 0.245

34 PINELLAS 1.046 0.656 0.439 1.000 0.627 0.420

35 SAINT JOHNS 0.636 0.415 0.319 1.000 0.653 0.501

36 SANTA ROSA 0.896 0.560 0.426 1.000 0.625 0.476

37 SEMINOLE 0.875 0.560 0.402 1.000 0.641 0.460

38 TAYLOR 0.288 0.221 0.188 1.000 0.767 0.654

39 VOLUSIA 1.307 0.772 0.467 1.000 0.591 0.357

40 WAKULLA 1.047 0.631 0.441 1.000 0.603 0.421

Frame Condo Unit
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

1 BAY 1.955 1.071 0.637 1.000 0.548 0.326

2 BREVARD 1.347 0.815 0.507 1.000 0.605 0.376

3 BREVARD 1.203 0.750 0.490 1.000 0.624 0.407

4 BROWARD 3.744 0.770 0.771 1.000 0.206 0.206

5 BROWARD 8.181 1.159 1.169 1.000 0.142 0.143

6 CITRUS 0.868 0.536 0.379 1.000 0.617 0.437

7 CLAY 0.331 0.245 0.213 1.000 0.739 0.643

8 COLLIER 2.025 1.169 0.698 1.000 0.578 0.345

9 COLUMBIA 0.245 0.194 0.173 1.000 0.790 0.706

10 DIXIE 1.326 0.761 0.481 1.000 0.574 0.362

11 DUVAL 0.987 0.573 0.363 1.000 0.580 0.368

12 FRANKLIN 3.000 1.585 0.811 1.000 0.528 0.271

13 GLADES 1.716 0.963 0.623 1.000 0.561 0.363

14 HAMILTON 0.214 0.167 0.148 1.000 0.778 0.693

15 HILLSBOROUGH 1.278 0.765 0.487 1.000 0.598 0.381

16 HERNANDO 1.070 0.629 0.422 1.000 0.588 0.394

17 HOLMES 0.460 0.333 0.291 1.000 0.724 0.633

18 INDIAN RIVER 5.655 3.122 1.463 1.000 0.552 0.259

19 JACKSON 0.352 0.270 0.241 1.000 0.769 0.684

20 LEE 1.982 1.059 0.663 1.000 0.534 0.334

21 LEON 0.354 0.259 0.226 1.000 0.730 0.636

22 MARION 0.706 0.459 0.330 1.000 0.650 0.468

23 MARTIN 1.581 0.933 0.591 1.000 0.591 0.374

24 MARTIN 5.815 3.085 1.353 1.000 0.530 0.233

25 MIAMI‐DADE 2.932 0.685 0.686 1.000 0.234 0.234

26 MIAMI‐DADE 5.446 0.879 0.883 1.000 0.161 0.162

27 MONROE 5.006 2.559 1.113 1.000 0.511 0.222

28 MONROE 8.604 4.670 2.156 1.000 0.543 0.251

29 OKALOOSA 1.377 0.775 0.524 1.000 0.563 0.380

30 OSCEOLA 0.880 0.562 0.401 1.000 0.638 0.456

31 OSCEOLA 1.304 0.762 0.512 1.000 0.585 0.393

32 PALM BEACH 2.170 1.216 0.700 1.000 0.560 0.322

33 PALM BEACH 4.643 2.448 1.136 1.000 0.527 0.245

34 PINELLAS 1.024 0.639 0.423 1.000 0.624 0.413

35 SAINT JOHNS 0.590 0.387 0.302 1.000 0.656 0.511

36 SANTA ROSA 0.837 0.523 0.404 1.000 0.625 0.483

37 SEMINOLE 0.858 0.545 0.388 1.000 0.636 0.453

38 TAYLOR 0.263 0.204 0.178 1.000 0.775 0.676

39 VOLUSIA 1.276 0.755 0.451 1.000 0.591 0.354

40 WAKULLA 0.974 0.590 0.417 1.000 0.606 0.429

Masonry Condo 

Unit
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Form A‐6: Logical  Relationship to Risk  ‐ Building Code / Enforcement (Year Built) Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 

1980

Year Built 

1998

Year Built 

2004

Year Built 

1980

Year Built 

1998

Year Built 

2004

Ratios Relative to 1980 Year BuiltLoss Cost per Year Built

Construction / 

Policy
CountyLocation

1 BAY 14.459 14.459 12.085 1.000 1.000 0.836

2 BREVARD 9.477 9.477 7.496 1.000 1.000 0.791

3 BREVARD 8.421 8.421 6.471 1.000 1.000 0.768

4 BROWARD 18.028 14.976 14.976 1.000 0.831 0.831

5 BROWARD 30.472 27.369 27.369 1.000 0.898 0.898

6 CITRUS 5.009 5.009 3.609 1.000 1.000 0.720

7 CLAY 2.220 2.220 1.509 1.000 1.000 0.680

8 COLLIER 15.521 15.521 12.423 1.000 1.000 0.800

9 COLUMBIA 1.554 1.554 1.008 1.000 1.000 0.649

10 DIXIE 7.642 7.642 6.011 1.000 1.000 0.787

11 DUVAL 6.660 6.660 5.405 1.000 1.000 0.811

12 FRANKLIN 16.424 16.424 13.939 1.000 1.000 0.849

13 GLADES 11.275 11.275 8.697 1.000 1.000 0.771

14 HAMILTON 1.323 1.323 0.866 1.000 1.000 0.655

15 HILLSBOROUGH 8.026 8.026 6.169 1.000 1.000 0.769

16 HERNANDO 7.163 7.163 5.391 1.000 1.000 0.753

17 HOLMES 4.080 4.080 2.902 1.000 1.000 0.711

18 INDIAN RIVER 24.425 24.425 22.105 1.000 1.000 0.905

19 JACKSON 2.703 2.703 1.821 1.000 1.000 0.674

20 LEE 12.765 12.765 9.956 1.000 1.000 0.780

21 LEON 2.313 2.313 1.574 1.000 1.000 0.680

22 MARION 3.913 3.913 2.716 1.000 1.000 0.694

23 MARTIN 11.675 11.675 9.229 1.000 1.000 0.790

24 MARTIN 27.486 27.486 25.128 1.000 1.000 0.914

25 MIAMI‐DADE 16.939 13.904 13.904 1.000 0.821 0.821

26 MIAMI‐DADE 24.844 21.620 21.620 1.000 0.870 0.870

27 MONROE 33.558 33.558 31.132 1.000 1.000 0.928

28 MONROE 39.710 39.710 37.201 1.000 1.000 0.937

29 OKALOOSA 12.776 12.776 10.456 1.000 1.000 0.818

30 OSCEOLA 5.438 5.438 3.860 1.000 1.000 0.710

31 OSCEOLA 7.770 7.770 5.768 1.000 1.000 0.742

32 PALM BEACH 15.305 15.305 12.565 1.000 1.000 0.821

33 PALM BEACH 25.964 25.964 23.028 1.000 1.000 0.887

34 PINELLAS 7.948 7.948 6.158 1.000 1.000 0.775

35 SAINT JOHNS 5.212 5.212 3.982 1.000 1.000 0.764

36 SANTA ROSA 7.967 7.967 6.124 1.000 1.000 0.769

37 SEMINOLE 4.988 4.988 3.529 1.000 1.000 0.708

38 TAYLOR 2.122 2.122 1.478 1.000 1.000 0.697

39 VOLUSIA 8.722 8.722 6.963 1.000 1.000 0.798

40 WAKULLA 6.880 6.880 5.371 1.000 1.000 0.781

Commercial 

Residential
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong

1 BAY 6.318 3.028 2.046 1.000 0.479 0.324

2 BREVARD 7.159 3.470 1.902 1.000 0.485 0.266

3 BREVARD 6.704 3.309 1.855 1.000 0.494 0.277

4 BROWARD 12.764 2.858 2.826 1.000 0.224 0.221

5 BROWARD 21.676 4.209 3.943 1.000 0.194 0.182

6 CITRUS 4.950 2.518 1.474 1.000 0.509 0.298

7 CLAY 1.233 0.875 0.776 1.000 0.709 0.629

8 COLLIER 10.627 4.914 2.601 1.000 0.462 0.245

9 COLUMBIA 0.939 0.711 0.648 1.000 0.758 0.690

10 DIXIE 4.365 2.219 1.574 1.000 0.508 0.361

11 DUVAL 3.244 1.689 1.217 1.000 0.521 0.375

12 FRANKLIN 8.944 4.146 2.489 1.000 0.464 0.278

13 GLADES 8.852 4.293 2.370 1.000 0.485 0.268

14 HAMILTON 0.815 0.608 0.554 1.000 0.745 0.679

15 HILLSBOROUGH 6.896 3.300 1.829 1.000 0.479 0.265

16 HERNANDO 5.768 2.871 1.614 1.000 0.498 0.280

17 HOLMES 1.719 1.162 1.021 1.000 0.676 0.594

18 INDIAN RIVER 19.547 8.798 3.904 1.000 0.450 0.200

19 JACKSON 1.335 0.963 0.865 1.000 0.721 0.648

20 LEE 9.886 4.634 2.512 1.000 0.469 0.254

21 LEON 1.320 0.916 0.812 1.000 0.694 0.615

22 MARION 4.111 2.173 1.289 1.000 0.529 0.314

23 MARTIN 8.654 4.135 2.243 1.000 0.478 0.259

24 MARTIN 20.056 8.976 3.863 1.000 0.448 0.193

25 MIAMI‐DADE 10.891 2.546 2.539 1.000 0.234 0.233

26 MIAMI‐DADE 16.238 3.248 3.169 1.000 0.200 0.195

27 MONROE 21.707 7.488 3.753 1.000 0.345 0.173

28 MONROE 32.372 12.041 6.055 1.000 0.372 0.187

29 OKALOOSA 4.852 2.364 1.741 1.000 0.487 0.359

30 OSCEOLA 5.112 2.662 1.555 1.000 0.521 0.304

31 OSCEOLA 7.012 3.484 1.970 1.000 0.497 0.281

32 PALM BEACH 10.846 5.010 2.591 1.000 0.462 0.239

33 PALM BEACH 18.001 7.971 3.611 1.000 0.443 0.201

34 PINELLAS 5.793 2.843 1.605 1.000 0.491 0.277

35 SAINT JOHNS 2.201 1.281 1.053 1.000 0.582 0.479

36 SANTA ROSA 3.156 1.695 1.357 1.000 0.537 0.430

37 SEMINOLE 4.941 2.575 1.510 1.000 0.521 0.306

38 TAYLOR 1.027 0.721 0.645 1.000 0.702 0.627

39 VOLUSIA 6.521 3.115 1.669 1.000 0.478 0.256

40 WAKULLA 3.418 1.840 1.417 1.000 0.538 0.415

Location
Ratio Relative to WeakLoss Cost by Building Strength

Frame Owners

Construction / 

Policy
County
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 5.868 2.883 2.010 1.000 0.491 0.343

2 BREVARD 7.068 3.408 1.842 1.000 0.482 0.261

3 BREVARD 6.636 3.254 1.798 1.000 0.490 0.271

4 BROWARD 12.367 2.799 2.760 1.000 0.226 0.223

5 BROWARD 20.560 3.894 3.724 1.000 0.189 0.181

6 CITRUS 4.893 2.474 1.426 1.000 0.506 0.292

7 CLAY 1.165 0.847 0.767 1.000 0.727 0.658

8 COLLIER 10.490 4.815 2.511 1.000 0.459 0.239

9 COLUMBIA 0.889 0.690 0.641 1.000 0.777 0.721

10 DIXIE 4.059 2.116 1.548 1.000 0.521 0.381

11 DUVAL 3.014 1.610 1.197 1.000 0.534 0.397

12 FRANKLIN 8.224 3.901 2.433 1.000 0.474 0.296

13 GLADES 8.733 4.196 2.287 1.000 0.481 0.262

14 HAMILTON 0.772 0.591 0.548 1.000 0.766 0.710

15 HILLSBOROUGH 6.806 3.250 1.770 1.000 0.477 0.260

16 HERNANDO 5.700 2.822 1.557 1.000 0.495 0.273

17 HOLMES 1.621 1.123 1.008 1.000 0.692 0.622

18 INDIAN RIVER 18.383 8.386 3.708 1.000 0.456 0.202

19 JACKSON 1.260 0.933 0.854 1.000 0.740 0.678

20 LEE 9.743 4.490 2.420 1.000 0.461 0.248

21 LEON 1.246 0.887 0.802 1.000 0.712 0.644

22 MARION 4.067 2.130 1.250 1.000 0.524 0.307

23 MARTIN 8.439 3.925 2.201 1.000 0.465 0.261

24 MARTIN 18.915 8.528 3.726 1.000 0.451 0.197

25 MIAMI‐DADE 10.608 2.507 2.486 1.000 0.236 0.234

26 MIAMI‐DADE 15.641 3.152 3.081 1.000 0.202 0.197

27 MONROE 20.529 7.135 3.622 1.000 0.348 0.176

28 MONROE 30.024 11.104 5.720 1.000 0.370 0.190

29 OKALOOSA 4.554 2.272 1.717 1.000 0.499 0.377

30 OSCEOLA 5.056 2.604 1.505 1.000 0.515 0.298

31 OSCEOLA 6.924 3.407 1.903 1.000 0.492 0.275

32 PALM BEACH 10.538 4.764 2.539 1.000 0.452 0.241

33 PALM BEACH 17.187 7.588 3.508 1.000 0.442 0.204

34 PINELLAS 5.738 2.771 1.554 1.000 0.483 0.271

35 SAINT JOHNS 2.072 1.237 1.040 1.000 0.597 0.502

36 SANTA ROSA 2.972 1.632 1.338 1.000 0.549 0.450

37 SEMINOLE 4.887 2.520 1.462 1.000 0.516 0.299

38 TAYLOR 0.971 0.700 0.637 1.000 0.721 0.657

39 VOLUSIA 6.422 3.059 1.615 1.000 0.476 0.252

40 WAKULLA 3.202 1.770 1.398 1.000 0.553 0.437

Masonry Owners
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 27.285 27.285 2.953 1.000 1.000 0.108

2 BREVARD 17.431 17.431 2.134 1.000 1.000 0.122

3 BREVARD 15.882 15.882 2.049 1.000 1.000 0.129

4 BROWARD 33.923 33.923 3.300 1.000 1.000 0.097

5 BROWARD 58.492 58.492 6.057 1.000 1.000 0.104

6 CITRUS 10.410 10.410 1.579 1.000 1.000 0.152

7 CLAY 4.895 4.895 0.932 1.000 1.000 0.190

8 COLLIER 28.441 28.441 2.782 1.000 1.000 0.098

9 COLUMBIA 3.533 3.533 0.759 1.000 1.000 0.215

10 DIXIE 18.679 18.679 2.217 1.000 1.000 0.119

11 DUVAL 13.591 13.591 1.695 1.000 1.000 0.125

12 FRANKLIN 35.817 35.817 3.693 1.000 1.000 0.103

13 GLADES 21.220 21.220 2.578 1.000 1.000 0.122

14 HAMILTON 3.108 3.108 0.649 1.000 1.000 0.209

15 HILLSBOROUGH 16.928 16.928 2.063 1.000 1.000 0.122

16 HERNANDO 13.200 13.200 1.740 1.000 1.000 0.132

17 HOLMES 7.269 7.269 1.258 1.000 1.000 0.173

18 INDIAN RIVER 51.035 51.035 6.518 1.000 1.000 0.128

19 JACKSON 5.336 5.336 1.041 1.000 1.000 0.195

20 LEE 25.148 25.148 2.614 1.000 1.000 0.104

21 LEON 5.370 5.370 0.981 1.000 1.000 0.183

22 MARION 8.030 8.030 1.375 1.000 1.000 0.171

23 MARTIN 21.183 21.183 2.418 1.000 1.000 0.114

24 MARTIN 53.269 53.269 5.842 1.000 1.000 0.110

25 MIAMI‐DADE 29.022 29.022 2.810 1.000 1.000 0.097

26 MIAMI‐DADE 45.240 45.240 3.988 1.000 1.000 0.088

27 MONROE 61.396 61.396 5.665 1.000 1.000 0.092

28 MONROE 86.186 86.186 10.876 1.000 1.000 0.126

29 OKALOOSA 22.729 22.729 2.345 1.000 1.000 0.103

30 OSCEOLA 10.365 10.365 1.663 1.000 1.000 0.160

31 OSCEOLA 15.995 15.995 2.125 1.000 1.000 0.133

32 PALM BEACH 27.906 27.906 2.881 1.000 1.000 0.103

33 PALM BEACH 48.561 48.561 4.818 1.000 1.000 0.099

34 PINELLAS 13.908 13.908 1.700 1.000 1.000 0.122

35 SAINT JOHNS 9.888 9.888 1.340 1.000 1.000 0.136

36 SANTA ROSA 15.238 15.238 1.783 1.000 1.000 0.117

37 SEMINOLE 10.003 10.003 1.614 1.000 1.000 0.161

38 TAYLOR 4.237 4.237 0.779 1.000 1.000 0.184

39 VOLUSIA 16.289 16.289 1.902 1.000 1.000 0.117

40 WAKULLA 15.135 15.135 1.864 1.000 1.000 0.123

Mobile Homes

454

grullont
Typewritten Text
Appendix F

grullont
Typewritten Text

grullont
Typewritten Text

grullont
Typewritten Text



Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 2.451 0.910 0.498 1.000 0.371 0.203

2 BREVARD 1.215 0.525 0.356 1.000 0.432 0.293

3 BREVARD 1.019 0.472 0.346 1.000 0.463 0.340

4 BROWARD 2.810 0.571 0.547 1.000 0.203 0.195

5 BROWARD 7.139 1.085 0.884 1.000 0.152 0.124

6 CITRUS 0.610 0.323 0.268 1.000 0.529 0.439

7 CLAY 0.303 0.192 0.160 1.000 0.635 0.528

8 COLLIER 1.933 0.759 0.497 1.000 0.393 0.257

9 COLUMBIA 0.216 0.151 0.129 1.000 0.696 0.595

10 DIXIE 1.623 0.643 0.375 1.000 0.396 0.231

11 DUVAL 1.200 0.486 0.284 1.000 0.405 0.237

12 FRANKLIN 3.866 1.395 0.639 1.000 0.361 0.165

13 GLADES 1.342 0.603 0.437 1.000 0.449 0.326

14 HAMILTON 0.191 0.130 0.110 1.000 0.680 0.579

15 HILLSBOROUGH 1.166 0.489 0.347 1.000 0.420 0.297

16 HERNANDO 0.770 0.385 0.297 1.000 0.501 0.386

17 HOLMES 0.424 0.264 0.223 1.000 0.624 0.526

18 INDIAN RIVER 7.033 2.591 1.002 1.000 0.368 0.142

19 JACKSON 0.315 0.213 0.183 1.000 0.677 0.580

20 LEE 1.631 0.674 0.466 1.000 0.413 0.286

21 LEON 0.326 0.204 0.171 1.000 0.626 0.524

22 MARION 0.450 0.275 0.232 1.000 0.612 0.517

23 MARTIN 1.410 0.600 0.420 1.000 0.425 0.298

24 MARTIN 7.032 2.561 0.931 1.000 0.364 0.132

25 MIAMI‐DADE 2.068 0.497 0.489 1.000 0.240 0.236

26 MIAMI‐DADE 4.359 0.677 0.625 1.000 0.155 0.143

27 MONROE 7.816 2.153 0.887 1.000 0.276 0.113

28 MONROE 13.709 4.460 1.873 1.000 0.325 0.137

29 OKALOOSA 1.676 0.634 0.408 1.000 0.378 0.243

30 OSCEOLA 0.570 0.338 0.283 1.000 0.592 0.497

31 OSCEOLA 0.964 0.469 0.360 1.000 0.487 0.374

32 PALM BEACH 2.131 0.818 0.495 1.000 0.384 0.232

33 PALM BEACH 5.379 1.906 0.788 1.000 0.354 0.147

34 PINELLAS 0.863 0.403 0.300 1.000 0.467 0.348

35 SAINT JOHNS 0.657 0.311 0.231 1.000 0.473 0.352

36 SANTA ROSA 0.960 0.423 0.316 1.000 0.441 0.329

37 SEMINOLE 0.562 0.329 0.274 1.000 0.584 0.486

38 TAYLOR 0.258 0.161 0.134 1.000 0.625 0.521

39 VOLUSIA 1.203 0.497 0.315 1.000 0.413 0.262

40 WAKULLA 1.143 0.483 0.322 1.000 0.422 0.282

Frame Renters
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 2.249 0.843 0.465 1.000 0.375 0.207

2 BREVARD 1.175 0.513 0.344 1.000 0.436 0.293

3 BREVARD 0.990 0.461 0.334 1.000 0.465 0.338

4 BROWARD 2.672 0.539 0.526 1.000 0.202 0.197

5 BROWARD 6.490 0.844 0.764 1.000 0.130 0.118

6 CITRUS 0.597 0.313 0.258 1.000 0.525 0.433

7 CLAY 0.275 0.174 0.148 1.000 0.632 0.538

8 COLLIER 1.874 0.745 0.481 1.000 0.397 0.257

9 COLUMBIA 0.194 0.135 0.119 1.000 0.695 0.610

10 DIXIE 1.487 0.592 0.349 1.000 0.398 0.235

11 DUVAL 1.094 0.444 0.265 1.000 0.406 0.242

12 FRANKLIN 3.495 1.280 0.596 1.000 0.366 0.170

13 GLADES 1.306 0.589 0.422 1.000 0.451 0.323

14 HAMILTON 0.172 0.117 0.102 1.000 0.678 0.592

15 HILLSBOROUGH 1.124 0.476 0.335 1.000 0.424 0.298

16 HERNANDO 0.753 0.376 0.287 1.000 0.499 0.381

17 HOLMES 0.388 0.239 0.207 1.000 0.617 0.533

18 INDIAN RIVER 6.263 2.432 0.941 1.000 0.388 0.150

19 JACKSON 0.286 0.192 0.169 1.000 0.673 0.592

20 LEE 1.585 0.661 0.451 1.000 0.417 0.285

21 LEON 0.297 0.185 0.158 1.000 0.621 0.532

22 MARION 0.440 0.267 0.224 1.000 0.605 0.508

23 MARTIN 1.369 0.586 0.406 1.000 0.428 0.297

24 MARTIN 6.336 2.380 0.884 1.000 0.376 0.140

25 MIAMI‐DADE 2.000 0.478 0.472 1.000 0.239 0.236

26 MIAMI‐DADE 4.098 0.622 0.596 1.000 0.152 0.145

27 MONROE 7.116 1.975 0.848 1.000 0.278 0.119

28 MONROE 12.083 3.791 1.728 1.000 0.314 0.143

29 OKALOOSA 1.570 0.593 0.381 1.000 0.378 0.243

30 OSCEOLA 0.559 0.327 0.273 1.000 0.585 0.489

31 OSCEOLA 0.940 0.458 0.348 1.000 0.487 0.370

32 PALM BEACH 2.044 0.798 0.478 1.000 0.391 0.234

33 PALM BEACH 4.949 1.807 0.756 1.000 0.365 0.153

34 PINELLAS 0.840 0.393 0.290 1.000 0.468 0.345

35 SAINT JOHNS 0.609 0.286 0.215 1.000 0.469 0.353

36 SANTA ROSA 0.899 0.391 0.294 1.000 0.435 0.327

37 SEMINOLE 0.550 0.319 0.264 1.000 0.579 0.479

38 TAYLOR 0.235 0.146 0.124 1.000 0.619 0.528

39 VOLUSIA 1.155 0.485 0.305 1.000 0.420 0.264

40 WAKULLA 1.058 0.447 0.300 1.000 0.423 0.284

Masonry Renters
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 5.029 1.150 0.771 1.000 0.229 0.153

2 BREVARD 2.913 0.832 0.537 1.000 0.286 0.185

3 BREVARD 2.495 0.767 0.514 1.000 0.307 0.206

4 BROWARD 6.445 0.806 0.841 1.000 0.125 0.131

5 BROWARD 14.303 1.420 1.642 1.000 0.099 0.115

6 CITRUS 1.507 0.549 0.396 1.000 0.364 0.263

7 CLAY 0.547 0.265 0.226 1.000 0.485 0.413

8 COLLIER 4.790 1.193 0.744 1.000 0.249 0.155

9 COLUMBIA 0.367 0.210 0.183 1.000 0.573 0.499

10 DIXIE 3.283 0.820 0.573 1.000 0.250 0.175

11 DUVAL 2.396 0.621 0.440 1.000 0.259 0.184

12 FRANKLIN 7.586 1.719 1.102 1.000 0.227 0.145

13 GLADES 3.356 0.986 0.652 1.000 0.294 0.194

14 HAMILTON 0.330 0.181 0.157 1.000 0.548 0.477

15 HILLSBOROUGH 2.802 0.782 0.524 1.000 0.279 0.187

16 HERNANDO 1.953 0.643 0.439 1.000 0.329 0.225

17 HOLMES 0.800 0.360 0.308 1.000 0.450 0.385

18 INDIAN RIVER 13.514 3.314 2.046 1.000 0.245 0.151

19 JACKSON 0.557 0.293 0.255 1.000 0.527 0.458

20 LEE 4.109 1.086 0.697 1.000 0.264 0.170

21 LEON 0.602 0.280 0.239 1.000 0.465 0.397

22 MARION 1.096 0.471 0.343 1.000 0.430 0.313

23 MARTIN 3.462 0.967 0.629 1.000 0.279 0.182

24 MARTIN 13.724 3.302 1.936 1.000 0.241 0.141

25 MIAMI‐DADE 5.043 0.707 0.723 1.000 0.140 0.143

26 MIAMI‐DADE 9.585 0.941 1.012 1.000 0.098 0.106

27 MONROE 15.634 2.764 1.861 1.000 0.177 0.119

28 MONROE 25.256 5.399 3.923 1.000 0.214 0.155

29 OKALOOSA 3.665 0.824 0.577 1.000 0.225 0.158

30 OSCEOLA 1.414 0.577 0.417 1.000 0.408 0.295

31 OSCEOLA 2.417 0.781 0.535 1.000 0.323 0.221

32 PALM BEACH 5.024 1.259 0.770 1.000 0.251 0.153

33 PALM BEACH 11.147 2.580 1.474 1.000 0.231 0.132

34 PINELLAS 2.141 0.656 0.445 1.000 0.306 0.208

35 SAINT JOHNS 1.361 0.415 0.325 1.000 0.305 0.239

36 SANTA ROSA 2.103 0.560 0.433 1.000 0.266 0.206

37 SEMINOLE 1.387 0.560 0.404 1.000 0.404 0.291

38 TAYLOR 0.475 0.221 0.189 1.000 0.465 0.398

39 VOLUSIA 2.831 0.772 0.483 1.000 0.273 0.170

40 WAKULLA 2.362 0.631 0.463 1.000 0.267 0.196

Frame Condo Unit
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 4.606 1.071 0.727 1.000 0.233 0.158

2 BREVARD 2.814 0.815 0.520 1.000 0.290 0.185

3 BREVARD 2.434 0.750 0.496 1.000 0.308 0.204

4 BROWARD 6.087 0.770 0.797 1.000 0.126 0.131

5 BROWARD 12.905 1.159 1.306 1.000 0.090 0.101

6 CITRUS 1.486 0.536 0.383 1.000 0.360 0.257

7 CLAY 0.513 0.245 0.214 1.000 0.477 0.416

8 COLLIER 4.641 1.169 0.719 1.000 0.252 0.155

9 COLUMBIA 0.343 0.194 0.173 1.000 0.563 0.504

10 DIXIE 3.011 0.761 0.541 1.000 0.253 0.180

11 DUVAL 2.188 0.573 0.415 1.000 0.262 0.189

12 FRANKLIN 6.811 1.585 1.031 1.000 0.233 0.151

13 GLADES 3.277 0.963 0.629 1.000 0.294 0.192

14 HAMILTON 0.309 0.167 0.148 1.000 0.539 0.480

15 HILLSBOROUGH 2.709 0.765 0.506 1.000 0.282 0.187

16 HERNANDO 1.925 0.629 0.423 1.000 0.326 0.220

17 HOLMES 0.760 0.333 0.291 1.000 0.438 0.383

18 INDIAN RIVER 11.994 3.122 1.895 1.000 0.260 0.158

19 JACKSON 0.525 0.270 0.241 1.000 0.515 0.459

20 LEE 4.001 1.059 0.673 1.000 0.265 0.168

21 LEON 0.568 0.259 0.226 1.000 0.455 0.398

22 MARION 1.087 0.459 0.331 1.000 0.422 0.305

23 MARTIN 3.351 0.933 0.610 1.000 0.279 0.182

24 MARTIN 12.232 3.085 1.808 1.000 0.252 0.148

25 MIAMI‐DADE 4.847 0.685 0.698 1.000 0.141 0.144

26 MIAMI‐DADE 8.907 0.879 0.933 1.000 0.099 0.105

27 MONROE 14.048 2.559 1.748 1.000 0.182 0.124

28 MONROE 22.245 4.670 3.601 1.000 0.210 0.162

29 OKALOOSA 3.434 0.775 0.549 1.000 0.226 0.160

30 OSCEOLA 1.404 0.562 0.402 1.000 0.400 0.287

31 OSCEOLA 2.374 0.762 0.516 1.000 0.321 0.217

32 PALM BEACH 4.789 1.216 0.746 1.000 0.254 0.156

33 PALM BEACH 10.174 2.448 1.398 1.000 0.241 0.137

34 PINELLAS 2.096 0.639 0.430 1.000 0.305 0.205

35 SAINT JOHNS 1.281 0.387 0.308 1.000 0.302 0.241

36 SANTA ROSA 2.000 0.523 0.411 1.000 0.262 0.205

37 SEMINOLE 1.375 0.545 0.390 1.000 0.397 0.284

38 TAYLOR 0.447 0.204 0.179 1.000 0.456 0.399

39 VOLUSIA 2.718 0.755 0.466 1.000 0.278 0.172

40 WAKULLA 2.198 0.590 0.439 1.000 0.269 0.200

Masonry Condo 

Unit
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Form A‐6: Logical Relationship to Risk ‐ Building Strength

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong Weak Medium Strong
Location

Ratio Relative to WeakLoss Cost by Building StrengthConstruction / 

Policy
County

1 BAY 15.208 14.459 8.206 1.000 0.951 0.540

2 BREVARD 10.043 9.477 4.740 1.000 0.944 0.472

3 BREVARD 8.957 8.421 3.938 1.000 0.940 0.440

4 BROWARD 18.981 14.976 10.013 1.000 0.789 0.528

5 BROWARD 31.705 27.369 20.490 1.000 0.863 0.646

6 CITRUS 5.370 5.009 2.063 1.000 0.933 0.384

7 CLAY 2.394 2.220 0.846 1.000 0.927 0.353

8 COLLIER 16.428 15.521 7.765 1.000 0.945 0.473

9 COLUMBIA 1.684 1.554 0.547 1.000 0.923 0.325

10 DIXIE 8.105 7.642 3.876 1.000 0.943 0.478

11 DUVAL 7.033 6.660 3.614 1.000 0.947 0.514

12 FRANKLIN 17.239 16.424 9.774 1.000 0.953 0.567

13 GLADES 11.990 11.275 5.254 1.000 0.940 0.438

14 HAMILTON 1.432 1.323 0.476 1.000 0.924 0.333

15 HILLSBOROUGH 8.538 8.026 3.772 1.000 0.940 0.442

16 HERNANDO 7.641 7.163 3.156 1.000 0.938 0.413

17 HOLMES 4.380 4.080 1.621 1.000 0.932 0.370

18 INDIAN RIVER 25.382 24.425 16.884 1.000 0.962 0.665

19 JACKSON 2.919 2.703 0.985 1.000 0.926 0.337

20 LEE 13.557 12.765 6.050 1.000 0.942 0.446

21 LEON 2.495 2.313 0.877 1.000 0.927 0.352

22 MARION 4.212 3.913 1.494 1.000 0.929 0.355

23 MARTIN 12.375 11.675 5.772 1.000 0.943 0.466

24 MARTIN 28.517 27.486 19.338 1.000 0.964 0.678

25 MIAMI‐DADE 17.867 13.904 9.006 1.000 0.778 0.504

26 MIAMI‐DADE 25.983 21.620 15.319 1.000 0.832 0.590

27 MONROE 34.741 33.558 24.036 1.000 0.966 0.692

28 MONROE 41.038 39.710 29.369 1.000 0.968 0.716

29 OKALOOSA 13.480 12.776 6.768 1.000 0.948 0.502

30 OSCEOLA 5.840 5.438 2.135 1.000 0.931 0.366

31 OSCEOLA 8.302 7.770 3.363 1.000 0.936 0.405

32 PALM BEACH 16.141 15.305 8.278 1.000 0.948 0.513

33 PALM BEACH 27.070 25.964 16.934 1.000 0.959 0.626

34 PINELLAS 8.447 7.948 3.736 1.000 0.941 0.442

35 SAINT JOHNS 5.549 5.212 2.423 1.000 0.939 0.437

36 SANTA ROSA 8.477 7.967 3.649 1.000 0.940 0.431

37 SEMINOLE 5.358 4.988 1.969 1.000 0.931 0.367

38 TAYLOR 2.283 2.122 0.834 1.000 0.930 0.365

39 VOLUSIA 9.233 8.722 4.446 1.000 0.945 0.482

40 WAKULLA 7.304 6.880 3.404 1.000 0.942 0.466

Commercial 

Residential
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Form A‐6: Logical Relationship to Risk ‐  Condo Unit Floor Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

3rd Floor 9th Floor 15th Floor 18th Floor 3rd Floor 9th Floor 15th Floor 18th Floor

1 BAY 1.322 4.485 7.906 9.427 1.000 3.393 5.982 7.132

2 BREVARD 0.538 2.120 4.164 5.105 1.000 3.943 7.744 9.492

3 BREVARD 0.419 1.618 3.329 4.150 1.000 3.859 7.940 9.900

4 BROWARD 1.380 4.717 8.588 10.358 1.000 3.419 6.225 7.508

5 BROWARD 4.166 11.670 18.251 21.002 1.000 2.802 4.381 5.042

6 CITRUS 0.234 0.819 1.755 2.248 1.000 3.494 7.488 9.592

7 CLAY 0.100 0.354 0.779 1.010 1.000 3.529 7.770 10.076

8 COLLIER 0.891 3.344 6.674 8.230 1.000 3.754 7.494 9.240

9 COLUMBIA 0.060 0.210 0.488 0.648 1.000 3.507 8.143 10.814

10 DIXIE 0.914 2.276 3.620 4.212 1.000 2.490 3.961 4.608

11 DUVAL 0.699 2.180 3.768 4.482 1.000 3.119 5.392 6.413

12 FRANKLIN 2.282 5.957 9.371 10.384 1.000 2.611 4.107 4.551

13 GLADES 0.551 2.057 4.232 5.321 1.000 3.735 7.684 9.661

14 HAMILTON 0.059 0.201 0.455 0.590 1.000 3.419 7.741 10.054

15 HILLSBOROUGH 0.539 1.712 3.289 4.057 1.000 3.179 6.107 7.532

16 HERNANDO 0.324 1.257 2.708 3.461 1.000 3.884 8.369 10.693

17 HOLMES 0.147 0.631 1.496 1.976 1.000 4.303 10.208 13.488

18 INDIAN RIVER 4.536 10.926 16.110 17.704 1.000 2.409 3.552 3.903

19 JACKSON 0.091 0.354 0.851 1.127 1.000 3.896 9.373 12.407

20 LEE 0.730 2.547 5.082 6.312 1.000 3.489 6.962 8.647

21 LEON 0.107 0.358 0.777 1.000 1.000 3.331 7.229 9.311

22 MARION 0.154 0.547 1.247 1.633 1.000 3.556 8.106 10.616

23 MARTIN 0.590 2.337 4.732 5.893 1.000 3.958 8.015 9.981

24 MARTIN 4.361 11.818 17.993 20.506 1.000 2.710 4.126 4.702

25 MIAMI‐DADE 0.960 3.919 7.754 9.559 1.000 4.081 8.075 9.954

26 MIAMI‐DADE 2.261 7.879 13.554 16.010 1.000 3.485 5.995 7.082

27 MONROE 5.243 16.015 24.935 28.529 1.000 3.055 4.756 5.442

28 MONROE 9.516 19.888 27.227 30.159 1.000 2.090 2.861 3.169

29 OKALOOSA 0.823 3.287 6.484 7.970 1.000 3.992 7.875 9.681

30 OSCEOLA 0.195 0.733 1.689 2.210 1.000 3.760 8.670 11.346

31 OSCEOLA 0.380 1.294 2.685 3.389 1.000 3.409 7.070 8.926

32 PALM BEACH 0.976 3.686 6.965 8.506 1.000 3.776 7.135 8.714

33 PALM BEACH 2.969 9.271 15.065 17.498 1.000 3.122 5.073 5.893

34 PINELLAS 0.376 1.560 3.299 4.156 1.000 4.145 8.764 11.040

35 SAINT JOHNS 0.290 1.118 2.280 2.818 1.000 3.849 7.851 9.703

36 SANTA ROSA 0.469 1.710 3.531 4.428 1.000 3.651 7.536 9.451

37 SEMINOLE 0.194 0.704 1.581 2.051 1.000 3.624 8.137 10.560

38 TAYLOR 0.092 0.355 0.817 1.051 1.000 3.863 8.895 11.442

39 VOLUSIA 0.578 2.163 4.100 5.022 1.000 3.744 7.099 8.694

40 WAKULLA 0.545 1.763 3.194 3.843 1.000 3.234 5.859 7.048

Ratios Relative to 3rd Floor

Condo Unit A

Loss Cost by Floor of Interest
Construction / 

Policy
Location County / City
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Form A‐6: Logical Relationship to Risk ‐  Condo Unit Floor Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

3rd Floor 9th Floor 15th Floor 18th Floor 3rd Floor 9th Floor 15th Floor 18th Floor

Ratios Relative to 3rd FloorLoss Cost by Floor of InterestConstruction / 

Policy
Location County / City

1 BAY 4.602 14.648 21.587 24.401 1.000 3.183 4.691 5.303

2 BREVARD 2.121 8.592 13.606 15.640 1.000 4.051 6.415 7.374

3 BREVARD 1.711 7.431 12.099 14.053 1.000 4.344 7.073 8.215

4 BROWARD 5.020 16.235 24.227 27.479 1.000 3.234 4.826 5.474

5 BROWARD 11.875 28.915 39.437 43.570 1.000 2.435 3.321 3.669

6 CITRUS 0.945 4.602 7.835 9.285 1.000 4.870 8.291 9.826

7 CLAY 0.359 2.117 3.885 4.694 1.000 5.892 10.811 13.062

8 COLLIER 3.700 14.277 22.101 25.263 1.000 3.859 5.973 6.828

9 COLUMBIA 0.193 1.405 2.747 3.401 1.000 7.278 14.232 17.620

10 DIXIE 3.101 8.335 11.711 13.075 1.000 2.687 3.776 4.216

11 DUVAL 2.354 7.415 11.050 12.541 1.000 3.151 4.695 5.328

12 FRANKLIN 7.046 17.473 24.040 25.944 1.000 2.480 3.412 3.682

13 GLADES 2.284 9.662 15.547 18.038 1.000 4.230 6.807 7.897

14 HAMILTON 0.195 1.276 2.427 2.973 1.000 6.541 12.446 15.245

15 HILLSBOROUGH 2.121 7.734 12.047 13.872 1.000 3.646 5.680 6.540

16 HERNANDO 1.353 6.531 10.861 12.725 1.000 4.829 8.030 9.407

17 HOLMES 0.570 3.752 6.837 8.245 1.000 6.577 11.985 14.453

18 INDIAN RIVER 11.951 25.512 33.677 36.140 1.000 2.135 2.818 3.024

19 JACKSON 0.321 2.357 4.514 5.516 1.000 7.342 14.060 17.180

20 LEE 3.077 11.724 18.211 20.907 1.000 3.810 5.918 6.795

21 LEON 0.397 2.161 3.867 4.659 1.000 5.440 9.732 11.725

22 MARION 0.596 3.465 6.233 7.490 1.000 5.817 10.465 12.575

23 MARTIN 2.407 9.934 15.860 18.344 1.000 4.127 6.589 7.621

24 MARTIN 11.919 27.315 36.606 40.199 1.000 2.292 3.071 3.373

25 MIAMI‐DADE 3.859 15.035 23.322 26.705 1.000 3.896 6.043 6.919

26 MIAMI‐DADE 7.786 23.099 32.998 36.878 1.000 2.967 4.238 4.736

27 MONROE 15.217 37.096 49.531 54.201 1.000 2.438 3.255 3.562

28 MONROE 23.335 43.274 53.094 56.799 1.000 1.854 2.275 2.434

29 OKALOOSA 3.337 12.688 19.627 22.436 1.000 3.802 5.882 6.723

30 OSCEOLA 0.775 4.578 8.134 9.711 1.000 5.909 10.498 12.533

31 OSCEOLA 1.576 6.785 11.077 12.919 1.000 4.304 7.026 8.195

32 PALM BEACH 3.716 13.326 20.412 23.358 1.000 3.586 5.493 6.286

33 PALM BEACH 9.099 24.310 33.928 37.667 1.000 2.672 3.729 4.140

34 PINELLAS 1.546 7.294 11.967 13.950 1.000 4.718 7.741 9.023

35 SAINT JOHNS 1.157 5.095 8.316 9.664 1.000 4.406 7.190 8.356

36 SANTA ROSA 1.980 8.272 13.183 15.224 1.000 4.178 6.658 7.689

37 SEMINOLE 0.770 4.276 7.538 9.008 1.000 5.552 9.786 11.695

38 TAYLOR 0.336 2.064 3.822 4.605 1.000 6.134 11.359 13.685

39 VOLUSIA 2.240 8.560 13.235 15.193 1.000 3.822 5.910 6.784

40 WAKULLA 2.077 7.022 10.601 12.081 1.000 3.381 5.105 5.817

Condo Unit B
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Form A‐6: Logical Relationship to Risk ‐  Number of Stories Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

1 Story 2 Story 1 Story 2 Story 5 Story 10 Story 20 Story 5 Story 10 Story 20 Story

1 BAY 3.958 5.530 1.000 1.397

2 BREVARD 4.992 5.709 1.000 1.144

3 BREVARD 4.736 5.289 1.000 1.117

4 BROWARD 8.556 10.399 1.000 1.215

5 BROWARD 14.511 18.927 1.000 1.304

6 CITRUS 3.614 3.859 1.000 1.068

7 CLAY 0.970 1.043 1.000 1.075

8 COLLIER 7.160 8.437 1.000 1.178

9 COLUMBIA 0.774 0.805 1.000 1.041

10 DIXIE 2.832 3.808 1.000 1.345

11 DUVAL 2.144 2.848 1.000 1.328

12 FRANKLIN 5.691 8.127 1.000 1.428

13 GLADES 6.178 6.928 1.000 1.121

14 HAMILTON 0.664 0.697 1.000 1.050

15 HILLSBOROUGH 4.809 5.484 1.000 1.140

16 HERNANDO 4.109 4.481 1.000 1.090

17 HOLMES 1.305 1.416 1.000 1.085

18 INDIAN RIVER 13.415 17.531 1.000 1.307

19 JACKSON 1.065 1.120 1.000 1.052

20 LEE 6.739 7.745 1.000 1.149

21 LEON 1.021 1.106 1.000 1.083

22 MARION 3.070 3.199 1.000 1.042

23 MARTIN 6.011 6.835 1.000 1.137

24 MARTIN 13.602 17.803 1.000 1.309

25 MIAMI‐DADE 7.312 8.675 1.000 1.186

26 MIAMI‐DADE 10.607 13.602 1.000 1.282

27 MONROE 14.195 19.273 1.000 1.358

28 MONROE 21.922 29.664 1.000 1.353

29 OKALOOSA 2.963 4.077 1.000 1.376

30 OSCEOLA 3.786 3.966 1.000 1.047

31 OSCEOLA 4.987 5.465 1.000 1.096

32 PALM BEACH 7.369 8.726 1.000 1.184

33 PALM BEACH 12.010 15.423 1.000 1.284

34 PINELLAS 4.087 4.548 1.000 1.113

35 SAINT JOHNS 1.506 1.842 1.000 1.223

36 SANTA ROSA 2.027 2.569 1.000 1.268

37 SEMINOLE 3.655 3.842 1.000 1.051

38 TAYLOR 0.800 0.868 1.000 1.085

39 VOLUSIA 4.504 5.238 1.000 1.163

40 WAKULLA 2.250 2.915 1.000 1.295

Loss Cost by Number of 

Stories
Ratios Relative to 1 Story Loss Cost by Number of Stories Ratios Relative to 5 Story

County / City
Construction / 

Policy
Location

Frame Owners
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Form A‐6: Logical Relationship to Risk ‐  Number of Stories Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

1 Story 2 Story 1 Story 2 Story 5 Story 10 Story 20 Story 5 Story 10 Story 20 Story

Loss Cost by Number of 

Stories
Ratios Relative to 1 Story Loss Cost by Number of Stories Ratios Relative to 5 Story

County / City
Construction / 

Policy
Location

1 BAY 3.679 5.078 1.000 1.380

2 BREVARD 4.932 5.593 1.000 1.134

3 BREVARD 4.689 5.207 1.000 1.110

4 BROWARD 8.314 10.016 1.000 1.205

5 BROWARD 13.784 17.634 1.000 1.279

6 CITRUS 3.571 3.808 1.000 1.067

7 CLAY 0.922 0.992 1.000 1.076

8 COLLIER 7.074 8.262 1.000 1.168

9 COLUMBIA 0.738 0.769 1.000 1.042

10 DIXIE 2.636 3.505 1.000 1.330

11 DUVAL 1.996 2.620 1.000 1.313

12 FRANKLIN 5.223 7.332 1.000 1.404

13 GLADES 6.098 6.816 1.000 1.118

14 HAMILTON 0.634 0.666 1.000 1.051

15 HILLSBOROUGH 4.748 5.371 1.000 1.131

16 HERNANDO 4.060 4.420 1.000 1.089

17 HOLMES 1.236 1.344 1.000 1.087

18 INDIAN RIVER 12.509 15.958 1.000 1.276

19 JACKSON 1.011 1.065 1.000 1.053

20 LEE 6.649 7.613 1.000 1.145

21 LEON 0.970 1.052 1.000 1.085

22 MARION 3.034 3.160 1.000 1.041

23 MARTIN 5.865 6.654 1.000 1.134

24 MARTIN 12.848 16.452 1.000 1.281

25 MIAMI‐DADE 7.134 8.429 1.000 1.181

26 MIAMI‐DADE 10.264 12.980 1.000 1.265

27 MONROE 13.465 17.887 1.000 1.328

28 MONROE 20.234 26.813 1.000 1.325

29 OKALOOSA 2.786 3.811 1.000 1.368

30 OSCEOLA 3.742 3.918 1.000 1.047

31 OSCEOLA 4.926 5.387 1.000 1.094

32 PALM BEACH 7.173 8.443 1.000 1.177

33 PALM BEACH 11.499 14.519 1.000 1.263

34 PINELLAS 4.047 4.482 1.000 1.107

35 SAINT JOHNS 1.423 1.735 1.000 1.219

36 SANTA ROSA 1.909 2.420 1.000 1.268

37 SEMINOLE 3.612 3.794 1.000 1.051

38 TAYLOR 0.761 0.826 1.000 1.085

39 VOLUSIA 4.438 5.110 1.000 1.151

40 WAKULLA 2.116 2.721 1.000 1.286

Masonry Owners
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Form A‐6: Logical Relationship to Risk ‐  Number of Stories Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

1 Story 2 Story 1 Story 2 Story 5 Story 10 Story 20 Story 5 Story 10 Story 20 Story

Loss Cost by Number of 

Stories
Ratios Relative to 1 Story Loss Cost by Number of Stories Ratios Relative to 5 Story

County / City
Construction / 

Policy
Location

1 BAY 1.268 2.230 1.000 1.759

2 BREVARD 0.648 1.044 1.000 1.612

3 BREVARD 0.565 0.855 1.000 1.514

4 BROWARD 1.400 2.517 1.000 1.797

5 BROWARD 3.837 6.897 1.000 1.798

6 CITRUS 0.383 0.503 1.000 1.316

7 CLAY 0.223 0.258 1.000 1.159

8 COLLIER 0.942 1.628 1.000 1.728

9 COLUMBIA 0.172 0.185 1.000 1.078

10 DIXIE 0.878 1.473 1.000 1.678

11 DUVAL 0.663 1.095 1.000 1.653

12 FRANKLIN 2.060 3.663 1.000 1.778

13 GLADES 0.720 1.115 1.000 1.549

14 HAMILTON 0.148 0.163 1.000 1.097

15 HILLSBOROUGH 0.626 0.996 1.000 1.592

16 HERNANDO 0.442 0.626 1.000 1.416

17 HOLMES 0.302 0.351 1.000 1.160

18 INDIAN RIVER 3.964 6.901 1.000 1.741

19 JACKSON 0.243 0.265 1.000 1.094

20 LEE 0.818 1.354 1.000 1.655

21 LEON 0.235 0.275 1.000 1.168

22 MARION 0.311 0.369 1.000 1.187

23 MARTIN 0.742 1.194 1.000 1.610

24 MARTIN 3.892 6.911 1.000 1.776

25 MIAMI‐DADE 1.007 1.775 1.000 1.763

26 MIAMI‐DADE 2.123 4.029 1.000 1.898

27 MONROE 4.074 7.614 1.000 1.869

28 MONROE 7.814 13.555 1.000 1.735

29 OKALOOSA 0.827 1.445 1.000 1.747

30 OSCEOLA 0.382 0.463 1.000 1.211

31 OSCEOLA 0.549 0.792 1.000 1.442

32 PALM BEACH 1.074 1.873 1.000 1.744

33 PALM BEACH 2.807 5.115 1.000 1.822

34 PINELLAS 0.478 0.714 1.000 1.494

35 SAINT JOHNS 0.380 0.558 1.000 1.466

36 SANTA ROSA 0.516 0.789 1.000 1.530

37 SEMINOLE 0.373 0.460 1.000 1.232

38 TAYLOR 0.186 0.218 1.000 1.171

39 VOLUSIA 0.628 1.046 1.000 1.666

40 WAKULLA 0.624 1.002 1.000 1.607

Frame Renters
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Form A‐6: Logical Relationship to Risk ‐  Number of Stories Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

1 Story 2 Story 1 Story 2 Story 5 Story 10 Story 20 Story 5 Story 10 Story 20 Story

Loss Cost by Number of 

Stories
Ratios Relative to 1 Story Loss Cost by Number of Stories Ratios Relative to 5 Story

County / City
Construction / 

Policy
Location

1 BAY 1.159 2.029 1.000 1.751

2 BREVARD 0.634 1.014 1.000 1.600

3 BREVARD 0.553 0.839 1.000 1.518

4 BROWARD 1.353 2.383 1.000 1.762

5 BROWARD 3.483 6.091 1.000 1.749

6 CITRUS 0.373 0.496 1.000 1.329

7 CLAY 0.197 0.233 1.000 1.179

8 COLLIER 0.927 1.597 1.000 1.723

9 COLUMBIA 0.151 0.165 1.000 1.092

10 DIXIE 0.796 1.333 1.000 1.675

11 DUVAL 0.598 0.986 1.000 1.649

12 FRANKLIN 1.853 3.238 1.000 1.748

13 GLADES 0.706 1.097 1.000 1.555

14 HAMILTON 0.130 0.146 1.000 1.115

15 HILLSBOROUGH 0.609 0.964 1.000 1.585

16 HERNANDO 0.432 0.619 1.000 1.432

17 HOLMES 0.269 0.319 1.000 1.189

18 INDIAN RIVER 3.488 5.936 1.000 1.702

19 JACKSON 0.214 0.238 1.000 1.112

20 LEE 0.805 1.336 1.000 1.660

21 LEON 0.209 0.249 1.000 1.194

22 MARION 0.302 0.362 1.000 1.199

23 MARTIN 0.726 1.170 1.000 1.611

24 MARTIN 3.493 6.018 1.000 1.723

25 MIAMI‐DADE 0.988 1.730 1.000 1.751

26 MIAMI‐DADE 2.035 3.746 1.000 1.841

27 MONROE 3.727 6.739 1.000 1.808

28 MONROE 6.746 11.524 1.000 1.708

29 OKALOOSA 0.771 1.363 1.000 1.768

30 OSCEOLA 0.371 0.455 1.000 1.226

31 OSCEOLA 0.537 0.781 1.000 1.454

32 PALM BEACH 1.044 1.798 1.000 1.722

33 PALM BEACH 2.599 4.604 1.000 1.772

34 PINELLAS 0.467 0.702 1.000 1.504

35 SAINT JOHNS 0.346 0.519 1.000 1.498

36 SANTA ROSA 0.472 0.747 1.000 1.582

37 SEMINOLE 0.363 0.452 1.000 1.246

38 TAYLOR 0.165 0.198 1.000 1.196

39 VOLUSIA 0.612 1.007 1.000 1.647

40 WAKULLA 0.572 0.927 1.000 1.621

Masonry Renters
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Form A‐6: Logical Relationship to Risk ‐  Number of Stories Sensitivity

Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

1 Story 2 Story 1 Story 2 Story 5 Story 10 Story 20 Story 5 Story 10 Story 20 Story

Loss Cost by Number of 

Stories
Ratios Relative to 1 Story Loss Cost by Number of Stories Ratios Relative to 5 Story

County / City
Construction / 

Policy
Location

1 BAY 2.243 5.558 14.459 1.000 2.478 6.445

2 BREVARD 1.155 3.274 9.477 1.000 2.835 8.207

3 BREVARD 0.952 2.797 8.421 1.000 2.937 8.843

4 BROWARD 2.727 6.835 18.028 1.000 2.507 6.612

5 BROWARD 6.226 13.248 30.472 1.000 2.128 4.894

6 CITRUS 0.498 1.557 5.009 1.000 3.129 10.062

7 CLAY 0.180 0.623 2.220 1.000 3.459 12.335

8 COLLIER 2.009 5.530 15.521 1.000 2.753 7.727

9 COLUMBIA 0.103 0.398 1.554 1.000 3.856 15.055

10 DIXIE 1.341 3.084 7.642 1.000 2.300 5.698

11 DUVAL 1.031 2.531 6.660 1.000 2.456 6.463

12 FRANKLIN 3.248 7.048 16.424 1.000 2.170 5.057

13 GLADES 1.307 3.799 11.275 1.000 2.908 8.629

14 HAMILTON 0.095 0.351 1.323 1.000 3.690 13.912

15 HILLSBOROUGH 1.061 2.850 8.026 1.000 2.687 7.565

16 HERNANDO 0.734 2.290 7.163 1.000 3.120 9.757

17 HOLMES 0.308 1.133 4.080 1.000 3.673 13.224

18 INDIAN RIVER 5.670 11.252 24.425 1.000 1.985 4.308

19 JACKSON 0.183 0.709 2.703 1.000 3.873 14.765

20 LEE 1.640 4.513 12.765 1.000 2.751 7.783

21 LEON 0.201 0.670 2.313 1.000 3.337 11.526

22 MARION 0.327 1.126 3.913 1.000 3.440 11.950

23 MARTIN 1.400 3.991 11.675 1.000 2.850 8.337

24 MARTIN 5.993 12.310 27.486 1.000 2.054 4.586

25 MIAMI‐DADE 2.186 6.039 16.939 1.000 2.762 7.749

26 MIAMI‐DADE 4.221 10.021 24.844 1.000 2.374 5.886

27 MONROE 7.107 15.021 33.558 1.000 2.114 4.722

28 MONROE 10.754 19.848 39.710 1.000 1.846 3.692

29 OKALOOSA 1.682 4.590 12.776 1.000 2.728 7.595

30 OSCEOLA 0.459 1.587 5.438 1.000 3.459 11.851

31 OSCEOLA 0.872 2.566 7.770 1.000 2.941 8.906

32 PALM BEACH 2.112 5.578 15.305 1.000 2.641 7.247

33 PALM BEACH 4.890 10.911 25.964 1.000 2.231 5.310

34 PINELLAS 0.850 2.598 7.948 1.000 3.056 9.349

35 SAINT JOHNS 0.581 1.722 5.212 1.000 2.962 8.965

36 SANTA ROSA 0.933 2.704 7.967 1.000 2.899 8.543

37 SEMINOLE 0.441 1.478 4.988 1.000 3.348 11.303

38 TAYLOR 0.169 0.593 2.122 1.000 3.517 12.584

39 VOLUSIA 1.143 3.117 8.722 1.000 2.726 7.630

40 WAKULLA 0.980 2.535 6.880 1.000 2.585 7.017

Commercial 

Residential

466

grullont
Typewritten Text
Appendix F



FPHLM V5.0 2013 

 

Appendix G - Form A-7: Percentage Change in Logical Relationship to 
Risk  

467



Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

$0  $500 1% 2% 5% 10%

Coastal 0.1% 0.1% 0.1% 0.4% 0.5% 1.1%

Inland ‐3.5% ‐3.6% ‐3.6% ‐3.7% ‐4.3% ‐4.6%

North ‐3.8% ‐3.6% ‐3.3% ‐2.7% 0.1% 3.3%

Central ‐3.0% ‐2.9% ‐2.8% ‐2.6% ‐1.9% ‐1.2%

South 1.7% 1.6% 1.4% 1.4% 0.8% 1.1%

Statewide ‐0.5% ‐0.4% ‐0.3% ‐0.1% 0.1% 0.8%

Coastal 4.7% 5.3% 6.0% 7.2% 10.2% 12.3%

Inland ‐2.4% ‐2.2% ‐1.9% ‐1.6% ‐0.8% ‐0.5%

North ‐2.2% ‐1.5% ‐0.4% 1.2% 5.4% 9.6%

Central ‐0.8% ‐0.4% 0.3% 1.2% 4.5% 6.9%

South 7.4% 7.8% 8.3% 9.4% 11.5% 13.1%

Statewide 3.6% 4.2% 5.0% 6.2% 9.2% 11.5%

Coastal ‐1.0% ‐1.0% ‐1.0% ‐1.1% ‐1.2% ‐1.3%

Inland ‐7.2% ‐7.7% ‐7.7% ‐8.2% ‐9.7% ‐11.4%

North ‐5.9% ‐6.0% ‐6.0% ‐6.1% ‐6.4% ‐6.7%

Central ‐6.9% ‐7.2% ‐7.2% ‐7.5% ‐8.3% ‐9.4%

South 1.9% 1.8% 1.8% 1.8% 1.7% 1.6%

Statewide ‐1.9% ‐1.9% ‐1.9% ‐2.0% ‐2.2% ‐2.4%

Coastal ‐7.5% ‐7.1% ‐8.3% ‐7.1% ‐3.2% 0.1%

Inland ‐5.2% ‐6.7% ‐6.6% ‐6.7% ‐6.7% ‐5.9%

North ‐3.3% ‐0.8% ‐1.6% ‐0.8% 0.9% 1.4%

Central ‐4.7% ‐4.6% ‐4.7% ‐4.6% ‐4.1% ‐3.1%

South ‐8.9% ‐8.4% ‐9.8% ‐8.4% ‐3.6% 0.3%

Statewide ‐7.3% ‐7.1% ‐8.2% ‐7.1% ‐3.4% ‐0.3%

Coastal ‐4.5% ‐2.5% ‐4.2% ‐2.5% 2.8% 6.4%

Inland ‐4.6% ‐5.5% ‐5.5% ‐5.5% ‐5.4% ‐5.1%

North ‐1.4% 3.1% 2.2% 3.1% 5.4% 6.1%

Central ‐2.9% ‐1.1% ‐1.6% ‐1.1% 0.2% 0.6%

South ‐5.6% ‐3.7% ‐5.7% ‐3.7% 2.6% 7.1%

Statewide ‐4.5% ‐2.7% ‐4.3% ‐2.7% 2.3% 5.7%

Coastal ‐5.7% ‐6.7% ‐6.7% ‐6.9% ‐3.6% ‐0.3%

Inland ‐4.6% ‐5.4% ‐5.4% ‐6.4% ‐6.3% ‐5.9%

North ‐3.4% ‐2.1% ‐2.1% ‐0.9% 1.0% 1.9%

Central ‐4.2% ‐4.2% ‐4.2% ‐4.3% ‐3.7% ‐2.9%

South ‐6.5% ‐7.9% ‐7.9% ‐8.2% ‐4.2% ‐0.2%

Statewide ‐5.6% ‐6.6% ‐6.6% ‐6.9% ‐3.7% ‐0.5%

Coastal ‐2.2% ‐2.2% ‐2.2% ‐1.8% 2.8% 6.7%

Inland ‐3.8% ‐4.2% ‐4.2% ‐4.8% ‐4.6% ‐4.7%

North ‐1.6% 1.1% 1.1% 3.3% 5.7% 6.9%

Central ‐2.2% ‐1.0% ‐1.0% ‐0.4% 0.9% 1.4%

South ‐2.6% ‐3.1% ‐3.1% ‐2.9% 2.4% 7.2%

Statewide ‐2.4% ‐2.3% ‐2.3% ‐2.0% 2.3% 6.0%

$0  2% 3% 5% 10%

Coastal 3.3% 7.6% 9.7% 14.4% 29.9%

Inland ‐19.5% ‐18.2% ‐17.2% ‐15.1% ‐5.9%

North ‐8.6% ‐4.3% ‐2.0% 2.5% 17.1%

Central ‐12.3% ‐9.6% ‐8.1% ‐4.8% 7.5%

South 10.0% 14.4% 16.6% 21.4% 37.3%

Statewide ‐0.4% 3.8% 5.9% 10.5% 26.0%

Commercial 

Residential

Construction / Policy Region
Percent Change in Loss Cost

Form A‐7: Percent Change in Logical Relationship to Risk ‐ Deductibles

Masonry Condo Unit

Masonry Renters

Region
Percent Change in Loss Cost

Construction / Policy

Masonry Owners

Mobile Homes

Frame Owners

Frame Renters

Frame Condo Unit
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Masonry Frame

Coastal 4.7% 0.1%

Inland ‐2.4% ‐3.5%

North ‐2.2% ‐3.8%

Central ‐0.8% ‐3.0%

South 7.4% 1.7%

Statewide 3.6% ‐0.5%

Coastal ‐4.5% ‐7.5%

Inland ‐4.6% ‐5.2%

North ‐1.4% ‐3.3%

Central ‐2.9% ‐4.7%

South ‐5.6% ‐8.9%

Statewide ‐4.5% ‐7.3%

Coastal ‐2.2% ‐5.7%

Inland ‐3.8% ‐4.6%

North ‐1.6% ‐3.4%

Central ‐2.2% ‐4.2%

South ‐2.6% ‐6.5%

Statewide ‐2.4% ‐5.6%

Concrete

Coastal 29.9%

Inland ‐5.9%

North 17.1%

Central 7.5%

South 37.3%

Statewide 26.0%

Policy Region
Percent Change in Loss Cost

Commercial Residential

Form A‐7: Percent Change in Logical Relationship to Risk ‐ 

Construction

Condo Unit

Renters

Owners

Policy
Percent Change in Loss Cost

Region
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Frame Owners Masonry Owners Mobile Homes

Coastal 0.1% 4.7% ‐1.0%

Inland ‐3.5% ‐2.4% ‐7.2%

North ‐3.8% ‐2.2% ‐5.9%

Central ‐3.0% ‐0.8% ‐6.9%

South 1.7% 7.4% 1.9%

Statewide ‐0.5% 3.6% ‐1.9%

Region

Form A‐7: Percent Change in Logical Relationship to Risk  ‐ 

Policy Form

Percent Change in Loss Cost
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Coverage A Coverage B  Coverage C  Coverage D 

Coastal 1.6% ‐0.9% ‐9.2% 0.5%

Inland ‐3.2% ‐5.3% ‐5.0% ‐6.6%

North ‐3.9% ‐5.2% ‐3.2% ‐3.3%

Central ‐2.7% ‐5.3% ‐4.6% ‐5.5%

South 4.0% 2.2% ‐11.3% 2.4%

Statewide 0.8% ‐1.7% ‐8.8% ‐0.1%

Coastal 6.6% ‐0.9% ‐6.3% 4.4%

Inland ‐2.0% ‐5.3% ‐4.4% ‐5.9%

North ‐2.1% ‐5.2% ‐1.4% ‐1.4%

Central ‐0.4% ‐5.3% ‐2.7% ‐3.7%

South 10.4% 2.2% ‐8.2% 7.0%

Statewide 5.2% ‐1.7% ‐6.1% 3.4%

Coastal ‐0.9% ‐0.9% ‐1.3% ‐1.9%

Inland ‐6.5% ‐5.3% ‐11.2% ‐11.9%

North ‐5.7% ‐5.2% ‐6.6% ‐6.8%

Central ‐6.3% ‐5.3% ‐9.5% ‐9.7%

South 2.0% 2.2% 1.8% 0.8%

Statewide ‐1.7% ‐1.7% ‐2.3% ‐2.9%

Coastal NA NA ‐9.2% 0.5%

Inland NA NA ‐5.0% ‐6.6%

North NA NA ‐3.2% ‐3.3%

Central NA NA ‐4.6% ‐5.5%

South NA NA ‐11.3% 2.4%

Statewide NA NA ‐8.8% ‐0.1%

Coastal NA NA ‐6.3% 4.4%

Inland NA NA ‐4.4% ‐5.9%

North NA NA ‐1.4% ‐1.4%

Central NA NA ‐2.7% ‐3.7%

South NA NA ‐8.2% 7.0%

Statewide NA NA ‐6.1% 3.4%

Coastal 1.6% NA ‐9.2% 0.5%

Inland ‐3.2% NA ‐5.0% ‐6.6%

North ‐3.9% NA ‐3.2% ‐3.3%

Central ‐2.7% NA ‐4.6% ‐5.5%

South 4.0% NA ‐11.3% 2.4%

Statewide 0.8% NA ‐8.8% ‐0.1%

Coastal 6.6% NA ‐6.3% 4.4%

Inland ‐2.0% NA ‐4.4% ‐5.9%

North ‐2.1% NA ‐1.4% ‐1.4%

Central ‐0.4% NA ‐2.7% ‐3.7%

South 10.4% NA ‐8.2% 7.0%

Statewide 5.2% NA ‐6.1% 3.4%

Coastal 4.4% NA ‐33.6% NA

Inland ‐18.5% NA ‐52.6% NA

North ‐7.5% NA ‐42.5% NA

Central ‐11.2% NA ‐46.4% NA

South 11.2% NA ‐28.3% NA

Statewide 0.7% NA ‐36.6% NA

Form A‐7: Percent Change in Logical Relationship to Risk  ‐ Coverage

Construction / Policy
Percent Change in Loss Cost

Region

Frame Owners

Masonry Owners

Frame Condo Unit

Masonry Condo Unit

Commercial 

Residential

Mobile Homes

Frame Renters

Masonry Renters
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Year Built 1980 Year Built 1998 Year Built 2004

Coastal ‐2.0% ‐5.3% ‐8.6%

Inland ‐4.9% ‐5.0% ‐4.9%

North ‐6.2% ‐7.2% ‐8.1%

Central ‐5.5% ‐6.0% ‐7.1%

South 0.1% ‐4.0% ‐8.6%

Statewide ‐2.5% ‐5.3% ‐7.9%

Coastal 2.9% ‐0.5% ‐4.0%

Inland ‐3.6% ‐3.8% ‐3.7%

North ‐4.8% ‐5.6% ‐7.0%

Central ‐3.0% ‐3.7% ‐4.9%

South 6.1% 2.6% ‐2.3%
Statewide 1.8% ‐1.2% ‐3.9%

Year Built 1974 Year Built 1992 Year Built 2004

Coastal ‐1.2% ‐1.2% ‐0.3%

Inland ‐7.5% ‐7.5% ‐4.0%

North ‐6.0% ‐6.0% ‐4.7%

Central ‐7.1% ‐7.1% ‐4.4%

South 1.9% 1.9% 2.9%
Statewide ‐2.2% ‐2.2% ‐1.0%

Year Built 1980 Year Built 1998 Year Built 2004

Coastal ‐5.2% ‐8.6% ‐12.2%

Inland ‐8.2% ‐7.3% ‐5.3%

North ‐7.3% ‐9.0% ‐9.3%

Central ‐9.5% ‐9.7% ‐8.7%

South ‐3.5% ‐7.3% ‐13.1%

Statewide ‐5.5% ‐8.4% ‐11.0%

Coastal ‐1.1% ‐5.7% ‐10.0%

Inland ‐8.1% ‐7.1% ‐4.7%

North ‐7.6% ‐7.7% ‐8.3%

Central ‐8.2% ‐8.4% ‐7.3%

South 1.9% ‐3.4% ‐10.6%

Statewide ‐1.8% ‐6.0% ‐9.1%

Coastal ‐4.2% ‐7.6% ‐11.3%

Inland ‐6.8% ‐6.4% ‐5.2%

North ‐7.0% ‐8.6% ‐9.0%

Central ‐7.9% ‐8.2% ‐8.2%

South ‐2.5% ‐6.4% ‐12.0%

Statewide ‐4.5% ‐7.4% ‐10.2%

Coastal 0.2% ‐4.0% ‐8.2%

Inland ‐6.2% ‐5.7% ‐4.3%

North ‐6.9% ‐7.1% ‐7.9%

Central ‐6.1% ‐6.6% ‐6.5%

South 3.1% ‐1.5% ‐8.2%

Statewide ‐0.7% ‐4.3% ‐7.5%

Coastal 3.3% 19.2% 110.3%

Inland ‐19.5% ‐19.5% 71.5%

North ‐8.6% ‐8.6% 90.5%

Central ‐12.3% ‐12.3% 84.4%

South 10.0% 42.8% 120.7%

Statewide ‐0.4% 11.8% 105.0%

Percent Change in Loss Cost

Form A‐7: Percent Change in Logical  Relationship to Risk  ‐ 

Building Code / Enforcement (Year Built) Sensitivity

Commercial 

Residential

Percent Change in Loss Cost

Frame Owners

Masonry Owners

Frame Condo Unit

Masonry Condo Unit

Masonry Renters

Construction / 

Policy
Region

Mobile Homes

Frame Renters

Construction / 

Policy
Region

Percent Change in Loss Cost

Construction / 

Policy
Region
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

Weak Medium Strong

Coastal ‐2.3% ‐5.3% ‐11.3%

Inland ‐4.7% ‐5.0% ‐4.8%

North ‐4.7% ‐7.2% ‐10.0%

Central ‐5.1% ‐6.0% ‐7.5%

South ‐0.8% ‐4.0% ‐12.1%

Statewide ‐2.7% ‐5.3% ‐10.0%

Coastal 4.3% ‐0.5% ‐6.7%

Inland ‐3.3% ‐3.8% ‐3.9%

North ‐3.5% ‐5.6% ‐8.7%

Central ‐2.4% ‐3.7% ‐5.5%

South 8.0% 2.6% ‐6.1%

Statewide 3.0% ‐1.2% ‐6.2%

Coastal ‐1.2% ‐1.2% ‐0.3%

Inland ‐7.5% ‐7.5% ‐4.0%

North ‐6.0% ‐6.0% ‐4.7%

Central ‐7.1% ‐7.1% ‐4.4%

South 1.9% 1.9% 2.9%

Statewide ‐2.2% ‐2.2% ‐1.0%

Coastal ‐6.2% ‐8.6% ‐19.3%

Inland ‐7.8% ‐7.3% ‐5.5%

North ‐5.5% ‐9.0% ‐13.3%

Central ‐8.6% ‐9.7% ‐10.1%

South ‐5.4% ‐7.3% ‐22.6%

Statewide ‐6.3% ‐8.4% ‐16.9%

Coastal 1.7% ‐5.7% ‐13.0%

Inland ‐7.0% ‐7.1% ‐4.8%

North ‐6.3% ‐7.7% ‐11.0%

Central ‐6.1% ‐8.4% ‐8.0%

South 5.5% ‐3.4% ‐14.3%

Statewide 0.8% ‐6.0% ‐11.5%

Coastal ‐5.9% ‐7.6% ‐28.9%

Inland ‐7.9% ‐6.4% ‐8.1%

North ‐5.2% ‐8.6% ‐19.7%

Central ‐8.1% ‐8.2% ‐15.5%

South ‐5.3% ‐6.4% ‐33.2%

Statewide ‐6.1% ‐7.4% ‐25.9%

Coastal 1.3% ‐4.0% ‐21.7%

Inland ‐7.6% ‐5.7% ‐7.7%

North ‐6.1% ‐7.1% ‐16.9%

Central ‐6.3% ‐6.6% ‐13.0%

South 4.9% ‐1.5% ‐24.3%

Statewide 0.3% ‐4.3% ‐19.4%

Coastal 5.5% 15.6% 37.0%

Inland ‐16.1% ‐21.8% ‐5.9%

North ‐6.1% ‐11.4% 18.5%

Central ‐9.4% ‐14.9% 8.8%

South 12.0% 38.4% 47.5%

Statewide 2.0% 8.5% 31.1%

Form A‐7: Percent Change in Logical Relationship to Risk ‐ Building 

Strength

Percent Change in Loss Cost

Frame Condo Unit

Masonry Condo Unit

Commercial 

Residential

Frame Renters

Masonry Renters

Construction / 

Policy
Region

Frame Owners

Masonry Owners

Mobile Homes
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

3rd Floor 9th Floor 15th Floor 18th Floor

Coastal NA NA NA NA

Inland NA NA NA NA

North NA NA NA NA

Central NA NA NA NA

South NA NA NA NA

Statewide NA NA NA NA

Coastal NA NA NA NA

Inland NA NA NA NA

North NA NA NA NA

Central NA NA NA NA

South NA NA NA NA

Statewide NA NA NA NA

Form A‐7: Percent Change in Logical Relationship to Risk ‐ Condo 

Unit Floor

Construction / 

Policy
Region

Condo Unit A

Condo Unit B

Percent Change in Loss Cost
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Modeling Organization:  Florida International University

Model Name & Version Number: Florida Public Hurricane Loss Model 5.0

Model Release Date:  November 1, 2012

1 Story 2 Story

Coastal ‐3.0% ‐4.3%

Inland ‐5.2% ‐7.0%

North ‐6.3% ‐6.7%

Central ‐5.7% ‐7.3%

South ‐1.3% ‐2.7%

Statewide ‐3.4% ‐4.7%

Coastal 3.1% 1.6%

Inland ‐3.9% ‐6.1%

North ‐4.9% ‐6.7%

Central ‐3.3% ‐5.2%

South 6.9% 5.4%

Statewide 1.9% 0.4%

Coastal ‐6.8% ‐7.5%

Inland ‐8.4% ‐12.2%

North ‐7.5% ‐7.5%

Central ‐9.9% ‐12.8%

South ‐5.5% ‐5.9%

Statewide ‐7.0% ‐7.9%

Coastal ‐2.4% ‐2.9%

Inland ‐8.8% ‐13.7%

North ‐8.2% ‐10.1%

Central ‐9.4% ‐12.2%

South 1.2% 1.0%

Statewide ‐3.2% ‐4.0%

5 Story 10 Story 20 Story

Coastal ‐51.6% ‐39.5% 0.2%

Inland ‐68.1% ‐56.8% ‐21.8%

North ‐57.8% ‐47.1% ‐11.4%

Central ‐62.4% ‐51.1% ‐14.9%

South ‐47.8% ‐35.0% 6.7%

Statewide ‐53.6% ‐42.0% ‐3.4%

Region
Percent Change in Loss Cost

Frame Renters

Masonry Renters

Commercial 

Residential

Construction / Policy

Form A‐7: Percent Change in Logical Relationship to Risk ‐ 

Number of Stories

Construction / Policy Region

Frame Owners

Masonry Owners

Percent Change in Loss Cost
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Appendix H – Form A-8: Probable Maximum Loss for Florida 
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RangeStart 

(Millions)
RangeEnd (Millions) Total Loss (Millions)

Average Loss per Year 

(Millions)

Number of 

Hurricanes

Expected Annual Hurricane 

Losses (Millions)

Return Period 

(Years)

0 500 1,184,275.63 33.57 10,311 21.15 2.15

501 1000 1,706,984.27 729.79 3,521 30.48 2.87

1001 1500 1,829,066.65 1,235.02 2,360 32.66 3.18

1501 2000 1,845,846.55 1,741.36 1,735 32.96 3.42

2001 2500 1,785,982.92 2,238.07 1,336 31.89 3.63

2501 3000 1,783,741.31 2,752.69 1,097 31.85 3.80

3001 3500 1,625,932.24 3,245.37 874 29.03 3.96

3501 4000 1,759,099.90 3,750.75 853 31.41 4.10

4001 4500 1,864,788.28 4,247.81 803 33.30 4.24

4501 5000 1,701,368.46 4,739.19 657 30.38 4.37

5001 6000 3,738,528.36 5,489.76 1,251 66.76 4.56

6001 7000 4,271,766.51 6,521.78 1,225 76.28 4.82

7001 8000 4,510,661.47 7,492.79 1,126 80.55 5.10

8001 9000 4,775,114.30 8,496.64 1,090 85.27 5.38

9001 10000 4,994,982.68 9,496.16 1,031 89.20 5.67

10001 11000 5,165,027.07 10,498.02 958 92.23 5.99

11001 12000 5,775,886.94 11,505.75 992 103.14 6.32

12001 13000 5,551,303.41 12,502.94 877 99.13 6.67

13001 14000 6,258,484.42 13,488.11 959 111.76 7.06

14001 15000 6,626,595.73 14,500.21 924 118.33 7.50

15001 16000 6,059,556.70 15,497.59 807 108.21 7.95

16001 17000 6,007,078.66 16,502.96 731 107.27 8.40

17001 18000 6,270,579.77 17,466.80 767 111.97 8.89

18001 19000 6,189,925.01 18,477.39 671 110.53 9.40

19001 20000 5,984,729.81 19,494.23 654 106.87 9.92

20001 21000 6,270,292.00 20,491.15 636 111.97 10.51

21001 22000 5,914,697.44 21,507.99 556 105.62 11.11

22001 23000 6,666,359.93 22,521.49 607 119.04 11.78

23001 24000 5,991,875.40 23,497.55 506 107.00 12.49

24001 25000 6,077,573.77 24,506.35 521 108.53 13.23

25001 26000 5,976,552.35 25,540.82 503 106.72 14.02

26001 27000 5,804,808.22 26,505.97 499 103.66 14.87

27001 28000 5,357,566.25 27,474.70 409 95.67 15.76

28001 29000 5,326,363.01 28,483.22 429 95.11 16.65

29001 30000 5,689,978.20 29,481.75 420 101.61 17.63

30001 35000 24,029,957.11 32,341.80 1,675 429.11 20.82

35001 40000 21,790,118.91 37,375.85 1,371 389.11 27.63

40001 45000 18,185,460.92 42,390.35 1,023 324.74 36.58

45001 50000 16,928,255.78 47,285.63 847 302.29 49.47

50001 55000 13,346,416.76 52,338.89 630 238.33 67.47

55001 60000 11,521,582.52 57,321.31 486 205.74 92.56

60001 65000 9,036,351.21 62,319.66 364 161.36 128.74

65001 70000 7,094,241.15 67,564.20 256 126.68 177.22

70001 75000 5,632,299.86 72,208.97 193 100.58 251.12

75001 80000 3,550,752.72 77,190.28 118 63.41 352.20

80001 90000 4,884,578.66 84,216.87 145 87.22 518.52

90001 100000 3,426,985.38 95,194.04 92 61.20 949.15

100001 Maximum 5,077,339.44 120,889.03 117 90.67 3,500.00

302,847,714.04 50013Total

Form A‐8:  Probable Maximum Loss for Florida
Part A ‐ Personal and Commercial Residential Probable Maximum Loss for Florida
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Return Period (Years)  Estimated Loss Level (Billions)

Top Event $174.21  ‐ $2,075.28

1000 $95.86 $92.26  ‐ $100.04

500 $83.07 $80.16  ‐ $86.24

250 $72.20 $70.27  ‐ $73.69

100 $58.75 $57.28  ‐ $59.77

50 $47.45 $46.65  ‐ $48.49

20 $31.71 $31.03  ‐ $32.30

10 $19.63 $19.16  ‐ $20.10

5 $7.16 $6.88  ‐ $7.46

 Uncertainty Interval (Billions)

Form A‐8:  Probable Maximum Loss for Florida
Part B ‐ Personal and Commercial Residential Probable Maximum Loss for Florida
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