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October 22, 2016

Chair, Florida Commission on Hurricane Loss Projection Methodology
c/o Donna Sirmons

Florida State Boardf Administration

1801 Hermitage Boulevard, Suite 100

Tallahassee, FL 32308

Dear Commission Chairman:

| am pleased to inform you that thevised version of 6.8f Florida Public Hurricane Loss Model

is ready for review by the Commission. The FPHLM mdde been reviewed by professionals
having credentials and/or experience in the areas of meteorology, engineering, actuarial science,
statistics and computer science; for compliance with the Standards, as documented by the expert
certification forms GiG7.

Enclosed are 7 bound copies of our submission, which includes the summary statement of
compliance with the standards, the forms, and the submission checklist.

Please contact me if you have any questions regarding this submission.

Sincerely,

Shahid HamidPh.D, CFA

Professor of Financeand

Director, Laboratory for Insurance, Economic and Financial Research
International Hurricane Research Center

RB 202B, Department of Finance, College of Business

Florida International University

Miami, FL 33199
tel: 305 348 2727 fax: 305 348 4245

Cc: Kevin M. McCarty, Insurance Commissioner
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Statement of Compliance and Trade Secret Disclosure
ltems

The Florich Public Hurricane Loss Model 62intended to complwith each Standard of the
2015Report of Activities released by the Florida Commission on Hurricane Loss Projection
Methodology. The required disclosures, forms, and analysis are contained herein.

The source code for the loss model will be available for review by the Professional Team.
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Model Submission Checklist

1. Please indicate by checking below that the following has been included in your submission
documentation to the Florida Commission on Hurricane Loss Projection Methodology.

Yes | No Item

X 1. Letter to the Commission

a. Refers to the certification forms and states that professionals having cred
and/or experience in the areas opfeteorology, statisticsstructural /wind

X engineering, actuarial science, and compgufermationsciencehave reviewed thg
model forcompliance with the standards
X b. States model is ready to be reviewed by the Professional Team
X c. Any caveats to the above statements noted with a complete explanation
2. Summary statement of compliance with each individual standard asfetéend analyse
required in the disclosures and forms
X 3. General description of any trade secret information the modeling organization inte
present to the Professional Teand the Commission
X 4. Model Identification
X 5. Seven (7) Boun€opies (duplexed)
6. Link emailed to SBA staffontainingall required documentation that can be
X . .
downloaded from a single ZIP file
X a. Submission text in PDF format
X b. PDF filesupports highlighting and hyperlinking, and is bookmarkedtagdard,
form, and section
X c. Data file names include abbreviated name of modeling organization, standarg
and form name (when applicable)
X d. Form S6 (Hypothetical Events for Sensitivity and Uncertainty Analysis), if

required,n ASCIl and PDF format

e. Forms M1 (Annual Occurrence Rates)8/(Radius of Maximum Winds and
Radii Of Standard Wind Thresholds);2/(Mitigation Measure$ Range of
Changes in Damage),-A(Zero Deductible Personal Residential Loss Costs by,

X ZIP Code), A2 (Base Hurricanet8rm Set Statewide Losses);3X2004

Hurricane Season Loss&s4 Output RangesA-5 Percentage Change in Output

Ranges, A7 (Percentage Change in Logical Relationship to Risk), aBd A

(Probable Maximum Loss for Florida) in & format

X 7. All hyperlinks to the locations of forms are functional

. Table of Contents

9. Materials consecutively numbered from beginning to end starting with the first pa
(including cover) using a single numberisgstem, includinglate and time

10. All tables, graphs, and other ntext items consecutively numbered using wh
numberslisted in Table of Contents, and clearly labeled with abbreviation defined

11.All column headings shown and repeated at the top of evdasequent page for form
and tables

X
00
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12.Standards, disclosures, and form#atfics, modeling organization responses in ion
italics
X 13.All graphs and maps conform to guidelineglirNotification Requirements A.5e.
X 14.All units of measurement clearly identified with appropriate units used
15. All forms included in submission appendix except Forass(Mitigation Measure$
X Mean Damage Ratios and Loss Costs, Trade Secret item)-@rfdogical
Relationship to Risk (Trade Secret item)
X 16. Hard copy documentation identical to electroision
X 17. Signed Expert Certification FormsX3o G7
X 18. All acronyms listed and defined in submission appendix
2. Explanation of fANod0 responses indicated above.

Florida Public Hurricane Loss Model :
6.2 /W October 22, 2016

Model Name and Identification Modeler Signature Date
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GENERASAOANDARDS

G-1 Scope of the Model and Its Implementation

A. The model shal/l project | oss costs and proba
damage toriedented|l fpromemtwnyri cane events.

The Florida Public Hurricane Loss Model estimates loss costs and probable maximum loss levels
from hurricane events for personal lines and commercial lines of residential property. The losses
are estimated for building, appurtenant structure, contents, and additional living expense (ALE).

B. Themodel i ng organization shall ma iarstsalirre a doc
continual agreement and correct corresponden
computer source code to slides, technical p a

document s.

The FPHLM group members follow the process specified in the flowchkrgofel in order to
assure continual agreement and correct correspondence of databases, data files, and computer
source code to slides, technical papers, and FPHLM documents.

C.Al'l software and data (1) | ocated within the
model uséeéd)to project modeled |l oss costs and
|l evel s, and (4) used to create forms require
of Activities shall fall within the scope of
and shall be | ocameddlenetenit el azeds

All software and data used to validate the modeljgat insured loss cost and PML, aréate
forms required by th€ommission are centrally maintainadthe model hardware infrastructure
and easily accessible by appropriatetenembersand comply with the Computer/Information
Standards.
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Disclosures

1. Specify he model version identificationlf the model submitted foreview is implemented
on more than one platform, specify each model platform. Specify which platform is the
primary platform and verify how any other platforms produce the same model output results
or are otherwise functionally equivalent as providedfari t he A Pr ocess for D
Acceptability of a Computer Simulation Model
and Acceptance Criteria for Functionally Equivalent Model Platforms

The model name is Florida Public Hurricane Loss Model (FPHOMg. currenversion
identification is V6.2

2. Provide a comprehensive summary of the model. This sumnsaguldinclude a technical
description of the model including each major component of the model useatdgectloss
costs and probable maximum lossvidsfor damage to insured residential property from
hurricane events causing damage Florida. Describe the theoretical basis of the model and
include a description of the methodology, particularly the wind components, the
vulnerability components, and the insured loss components used in the model. The
descriptionshouldbe complete andhustnot reference unpublished work

The model is a very complex set of computer programs. The programs simulate probable future
hurricane activity, includingvhere and when hurricanes fortheir tracks and intensities, their

wind fields and sizesiow they decay and how they are affected by the temtanyg the tracks after
landfall; how the winds interact with differetypes of residential structurdspw much they can
damage roofs, windows, doors, interior, and contegtts;how much it will cost to rebuild the
damaged partgand how much of the loss will be paid by insurdise model consists of three
major components: wind hazard (meteorology), vulnerability (engineering), and insured loss cost
(actuaial). It has over a dozen stimponentsThe major components are developed independently
before being integrate@he computer platform is designed to accommodated sulbomponents

or enhancements. Following is the description of each of the major componettis emthputer
platform.

METE OROLOGY COMPONENT
Hurricane Track and Intensity

The storm track model generates storm tracks and intermiti®e basis dfistorical storm

conditions and motiond.he initial seeds for the storms are derived from the HURDAT database.
For historical ladfalling storms in Florida and neighboring states, the initial positions, intensities
and motions are taken from the track fix 36 hours prior to first landfall. For historical storms that
do not make landfall but come within 62 sm (100 km) of the ctiesinitial conditions are taken

from thetrack fix 36 hours prior to the poiat which the storm first comes within 62 sm of the

coast (threat zone) and has a central pressure below 10@malb, uniform random error terms

are added to the initial pdmin, the storm motion change, atfe storm intensity change. The

initial conditions derived from HURDAT are recycled as necessary to generate thousands of years
of stochastic track#\fter the storm is initiated, the subsequent motion and intensity changes are
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sampled from empirically derived probability distribution functions over the namehin
(Figure?2).
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Figure2. Florida Public Hurricane Loss Model domain. Circles represent the threat zone. Blue color
indicates water depth exceeding 656 ft (200 m).

The time evolution of the stochastic storm traakd intensity are governed by the following
equations L
Vs WA | ©Y0
AT ©
Yo @OE+LYo
Y 0oYo
where ofty are the longitudand latitude of the stormghi— are the storm speed and heading (in
conventional mathematical senggjs central pressurey is the rate of change m andYois the
time step. The time step of the model is currently one hourchidwege irstorm speed and
direction| & —are sampled at every 2ur interval from a probability distributidonction
(PDF). The intensity change after the initial 24 hours of track evolution is sampled every six
hours to capture the more detailed evolution over the continental shelf (shallow water). From the
24-hour change in speed and heading angle, we detetimenspeed and heading angle at each
onehour time step by assuming the storm undergoes a constant acceleration that gives the 24
hour sampled change in velocity. For changes in pressure, we first sample from a PDF of relative
intensity change$ | for the sixhour period and then determine the corresponding rate of
pressure change. The relative intensity is a function of the climatological sea surface
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temperatures and the upper tropospheric 100 mb temperatures. The Ri#Fshainges
1 & H1 depend onspatial location, as well as the current storm motion and intensity. These
PDFs are of the form

DOP® 01 @

wherea s eitherc, d, orr and are implemented as discrete bins that are represented by multi
dimensionammatrices (arraysA(I,m,i,j). The indicesi(j) are the storm location bins. The model
domain (100W to 70W, 15N to 40N) is divided into-dégree boxes. The indexrepresents the
bin interval that falls into. That is, the range of all possible valuea afe divided into discrete
bins, the number of which depends on the variable, and the imdexresents the particular kan
is in at the current time step. As wahthe range of all possible kees of the change mare also
discretely binned. Given a set of indicesi(j), which represent the current storm location and
state, the quantiti(l,m,i,j) represents the probability that the change, jn ¢will fall into the

I'th bin. WhenrA is randomly sampled, one of the bins represented blittiex, e.gl’, is chosen.
The change ad is then assigned the midpoint value of the bin associated' withuniform

random error term equal to the width of Birs added té8, so thaA may assumany value
within the binl'.

The PDFs described above were generated by parsing the HURDAT database and computing for
each track the storm motion and relative intensity changes at evaag®8hour interval,

respectively, and then binning them. Otioe counts are tallied, they are then normalized to

obtain the distribution function. For intensity reports for which pressure is not available, a wind
pressure relation developed by Landsea et al. (2004) is used. In cases where there is no pressure
reportfor a track fix in the historical data but there are two pressure reports withih@g4

period that includes the track fix, the pressures are derived by linear interpolation. Otherwise the
pressure is derived by using the wipicessure relation. Exttaopical systems, lows, waves, and
depressions are excluded. Intensity changes over land are also excluded from the PDFs. To ensure
a sufficient density of counts to represent the PDFs for each grid box, counts from nearest
neighbor boxes, ranging up td@®5 grid units away (both norgouth and eastest direction),

are aggregated. Thus, the effective size of the boxes may range from 1.5 to 5.5 degrees but are
generally a fixed size for a particular variable. The sizes of the bins were determinedruydind
compromise between large bin sizes, which ensure a robust number of counts in each bin to
define the PDF, and small bin sizes, which can better represent the detail of the distribution of
storm motion characteristics. Detailed examinations of thglmisons, as well as sensitivity

tests, were done. Bin sizes need not be of equal width, and a nonlinear mapping function is used
to provide unequatized bins. For example, most storm motion tends to be persistent, with small
changes in direction andespd. Thus, to capture this detail, the bins are moregyfiamed at

lower speed and direction changes.

For intensity change PDFs, boxes which are centered over shallow water (defined to be less than
656 ft deepseeFigure?2) are notaggregated with boxes over deeper waters. Deeper waters may
have significantly higher ocean heat content, which can lead to more rapid intensification [see, for
example, Shay et al. (2000); DeMaria et al. (2005); Wada and Usui (2007)].

In Figure3 we showa sample of tracks generated by the stochastic track and intensity model.
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Figure3. Examples of simulated hurricane trask Numbers refer to the stochastic track number, and
colors represent storm intensity based on central pressure. Dashed lines represent tropical storm
strength winds, and Cat-5 winds are represented by black, blue, orange, red, and turquoise,
respectively.

When a storm is started, the parameters for radius of maximum winéttodadd Bare
computed and appropriate error terms are added as described beldvall@hd Bterm is
modeled as follows:

6 PX T T COBUTYX PO T8I Tt 1T T DR T O 18T TT U TYQPTHO

whereLat is the current latitud@egreespf the storm centebelP is the central pressure
difference(mb),andRmaxis the radius of maximum windkm). The random error term for the
Holland Bis modeled using a Gaussian distribntith a standard deviation of286. Figure4

shows a comparison between the Willoughby and Rahn (B)@4)aset (see Standardal)

and the modetkresults (scaled to equal the 116 measured occurrences in the observed dataset).
The modeled results with the error term have a mean of about 1.38 and are consistent with the
observed results. The figure indicates excellent agreement between modelaadtas.
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Distribution of the B parameter

16
15
14
13

12
® 11
o 10
)
E 8 [T] Observed
5 7 | | [l Model Scaled
S 6
(@) 5 .
4 1
3
2
l 1 -
0 +——— o A A A RN B,

B parameter

Figure4. Comparison between the modeled and observed Willoughby and Rahn (2B@iaset.

We developdanRmaxmodel usingalandfall Rmaxdatabasgwhich includesmore than 100
measurements for storms up tdl20We have opted to model tRemaxat landfall rather than the
entire basin for a variety of reasons. One is that the distribution of laRdf@akmay be different
than that over open water. An analysis of the lan&Ralbxdatdbase and the 1988007 DeMaia
extended bestack data shows that there appears to be a difference in the dependemaear
central pressurd’(min) between the two datas€3emuth et al., 2006)Ihe landfall datset
provides a larger set of independent measurements, moreQiatotms compared to about 31
storms affecting the Fla@a threat area region in theditrack data. Since landfaRmaxis most
relevant for loss cost estimation and has a larger independent sample size, we@savéoch
model the landfall daset.

We modekdthe distribution oRmaxusing a gamma distribution. Usitige maximum likelihood

estimation method, we fodrthe estimated parameters floe gamma distributior IE= 4.76 and
— & pWith these estimated values, we show a plot of the observed andeexgistribution
in Figure5. TheRmaxvalues are binned indm intervals, with the-axis showing the end value
of the interval.
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Modeled vs Observed Rmax
Model based on Gamma Distribution
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Figure5. Observed and expected distribution fd(Rmax The xaxis is the radius in statute miles, and
the y-axis is the frequency of occurrence.

An examination of th&maxdatabase shows thatense storms, essentially Category 5 storms
have rather small radii. Thermodynamic considerat{@iioughby, 1998) also suggest that
smaller radii are more likely for these storms. Thus, we model CategbgiB>00 mb, where
DelP=1013PminandPminis the central pressure of the storm) storgiagia gamma

distribution, but with a smaller value of thigparameter, which yields a smaller mé&amaxas

well as smaller variance. We have found that for CategiotyelP<80) storms there is
essentially no discernable dependencBmfixon central presure. This is further verified by
looking at the mean and varianceRyhaxin each 10mb interval. Thuswe model Categoryi#
storms with a single set of parameters. For a gamma distribution, the mean is dideari/
variance isd?. For Category 5 storms, we adjdstuch that the mean is equal to the mean of the
three Category 5 storms in the database: 1935 No Name, 1969 CandlE992 AndrewAn
intermediate zone betwe@&elP=80 mb andelP=90 mb is established where the me&the
distribution is linearly interpolated between the Categdd/ialue and the Category 5 value. As
thed value is reduced, the variance is likewise reduced. Since there are insufficient observations
to determine what the variance should be for Catega@torms, we rely on the assumption that
variance is apropriately described by thesealedd, via kd?.

A simple method is used to generate the gardisiibuted values. A uniformly distributed
variable, a product of the random number generator tiatrissic to the FORTRAN compiler, is
mapped onto the range Bfmaxvalues via the inverse cumulative gamma distribution function.
For computational efficiency, a lookup table is used for the inverse cumulative gamma
distribution function, with interpolain between table value&igure6 shows a test using
100,000 samples étmaxfor Category 14 storms, binned in 1 sm intervals and compared with
theexpected values.
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Simulated vs Theoretical Dist. of Rmax
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Figure6. Comparison of 100,00Bmaxvalues sampled from the gamma distribution for Categorg1
storms to the expected values.

For Category 5 and intermediate Categdry dtorms, weisethe property that the gamma
cumulative distribution function is a function ¢&€x/d). Thus, by recalingd, we can use the same
function (lookup table), but just rescaléRmay. The rescale®maxwill still have a gamma
distributionbut with differentmean and variance.

The storms in the stochastic model will undergo central prestianges during the storm life
cycle. When a storm is generated, an appropRataxis sampled for the storrio ersure the
appropriate mean values Rfmaxas pressure chges, thdRmaxis rescaled every time step as
necessaryAs long as the storm h&®elP < 80 mb, there is in effect no rescaling. In the stochastic
storm generator, we limit the rangeRxinaxfrom 4 sm tol20 sm.

Storm landfall and decay over land are determined by comparing the storm I¢gcafjarnth a
0.6sm resolution landea mask. This land mask is obtained from the U.S. Geological Survey
(USGS) land use cover data, and inland bodies of water have besssifedl as land to avoid
spurious landfalls. Landfall occurs every time the storm moves from an ocean point to a land
point as determined by this land mask. During landfall, the central pressure is modeled by a filling
model described in Vickery (2008)d is no longer sampled from the intensity change PDks.
Vickery (2005) model basically uses an exponentially decaying, in time, function of the central
pressure difference with the decay coefficients varying by remiahe basis dfistorical data.

The pressure filling model also takes into account the speed and size of the storm. When the
storm exits teea, the landilling model is turned off and samplyof the intensity change PDFs
begins again. A storm is dissipated when its central pressured=xt@11 mb.
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Wind Field Model

Once a simulated hurricane moves to within a threshold distance of a AtRi@ade, thewvind

field model is turned onfhe model is based on the slab boundary layer concept originally
conceived by Ooyama (1969) and implented by Shapiro (1983imilar models based on this
concept have been developed by Thompson and Cardone,(Y83@ry et al. (1995 and

Vickery et al. (2000a)The model is initialized by a boundary layer vortex in gradient balance.
Gradient balanceepresents a circular flow caused by balance of forces on the flow whereby the
inward directed pressure gradient force is balanced by outward directed Coriolis and centripetal
accelerationsThe coordinate system translates with the hurricane vortex gavivelocityc.

The vortex translation is assumed to equal the geostriphi@ssociated with the larggcale
pressure gradienin cylindrical coordinates that translate with the moving vortex, equations for a
slab hurricane boundary layer underasgribed pressure gradient are

J o6 oréertrnhH . 0 ¢l - 1o

0— — W +— — LNMO — —— OouWd m —,

T 1o 17T % T 1 | T %o T o
, T 0O , T o b cT o - T o
00— + QO +—, V10 — —— oW T —,
T 1o 1T %o I T %o T o

whereu andyv are the respective radial and tangential wind comgsrrefative to the moving
storm;p is the sedevel pressurewhich varies with radiug}; f is the Coriolis parametewhich
varies with latitudet is the azimuthal coordinatk;is the eddy diffusin coefficientandF(c,u),
F(c,v) are frictional drag terms. All terms are assumed to be representative of means through the
boundary layerThe motion of the vortex is determined by the modeled storm track. The
symmetric pressure fielo(r) is specifiedoy the Holland (1980pressure profile with the central
pressure specified according to the intensity modeling in concert with the stornTtragkodel
for theHolland Bpressure profile and the radius of maximum wanel described above. The
wind fieldis solved on a polar grid with a ORIRmaxresolution.The inputRmaxis adjusted to
remove a biasaused by a tendency of the wind fislalution to placé&kmaxone grid point
radially outward from the input value.

The marine surface winds from the stabdel are adjusted to land surface winds using a surface
friction model. The FPHLM includes the ability to model losses at the "street level." To
incorporate this feature, the treatment of land surface friction in the model has been enhanced to
provide suface winds at high resolution and to take advantage of recent developments in
hurricane boundary layer theory. Therbihute winds from the slab model are interpolated to a 1
km (0.62 sm) fixed grid¢overing the entire state of Florida at every time gtegbtain a wind

swath for each storm. Surface friction is modeled using an effective roughness model (Axe, 2004)
based on the Source Area Model of Schmidt and Oke (1990) that takes into account upstream
surface roughness elements. The surface roughresesms are derived from the Multi
ResolutionLand Characteristics ConsortiuRLC) National Land Classification Database

(NLCD) 2011 land cover/land use datasé&n(et al., 2A.3) and the Statewide 20@D11Florida

Water Management District land use esléisation data (available from the Florida Department of
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Environmental Protection). The effective roughness elements are computed for eight incoming
wind directions on a grid of approximately 90 m (295 ft) resolution covering the entire state of
Florida.

For modeling losses at the ZIP Code level, the effective roughness elements are aggregated over
the ZIP Code by a weighted summation of the roughness elements according to population
density determined from census block dathe methodology for convenyy marine winds to

actual terrain winds is based on Powell et al. (2003) and Vickery et al. (2009). This method
assumes that wind at the top of the marine boundary layer is similar to the wind at the top of the
boundary layer over land, and a modified-l@igpd profile is then used to determine the wind near

the land surface. The winds are computed at various height levels that are needed for the
vulnerability functions for residential and commercial residential structures.

The effect of the seland trandion of hurricane winds coming onshore is modeled by modifying
the terrain conversion methodology of Vickery et al. (2009). This modification is based on the
concept of an internal boundary layer (IBrya, 1988)that develops as wind transitions from
smooth to rough surface conditions. Winds above the IBL are assumed to be in equilibrium with
marine roughness. In the equilibrium layer (EL), defined to beemtd of the IBL, the winds are
assumed to be in equofium with the local effective roughness. Between the EL and IBL the
winds are assumed to be in equilibrium with vertically varying-stisg changes in roughness
associated with upstream surface conditions. This cooéepaltiple equilibrium layerss

similar in philosophy to the method prescribed by the Engineering Sciences Data Unit (ESDU).
The coastal transition function produces wind transitions that are very close to the ESDU and
modified ESDU values reported in Vickery et al. (2009).

VULNERABILITY COMPONENT: PERSONAL RESIDENTIAL MODEL

The engineering component performs several tasks: (1) it estimates the physical damage to
exterior components of typical buildings, including roof cover, roof decking, walls, and openings;

(2) it assesses the intariand utilities damage and contents damage due to water penetration

through exterior damage and defects to interior walls, ceiling, doors, etc.; (3) it combines the
exterior and interior damage to estimate the building and content vulnerabilities;stdpdtes

additional living expenses; and (5) it estimates the appurtenant structure vulnerability (Pinelli et

al., 2003a, 2003b, 2004a, 2004b, 2005a, 2005b, 2006, 2007a, 2007b, 2008a, 2008b, 2009a, 2010a,
2011a, 2011p2012 Cope, 2004; Cope et al., 2002803b, 2004b, 2005; Gurley et al., 2003,

Torkian at al., 201,12014.

Exposure Study

Personal residential singfamily home buildings (PRB), either site buikigure?7) or
manufacturedKigure8), are categorized into typical generic groups with similar structural
characteristics, layout, and teaals within each group. These buildings can suffer substantial
external structural damage (in addition to envelope and interior damage), including collapse under
hurricane winds. The approach to assessing damage for each of these building typede$ to mo

the building as a whole so that interactions among components can be accounted for. The models
are intended to represent the majority of the
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An extensive survey of the Florida building stock was carried out to develop a manageable

number of building models that represent the majority of the Florida residential building stock.

The modelers analyzed several sources of data for building stock information. One source was the
Florida Hurricane Catastrophe Fund (FHCF) exposure databasteAsource was the Florida
countiesd6 property tax appraiserso databases.
county to county, many dhese databases contain the structural information needed to define
common structural types. Each of the @1nirties were contacted to acquire their tax appraiser
database, producing new information from 33 counties. This collection of new data coupled with

the existing data from an additional 18 counties yielded a total of 51 counties. These 51 counties
accounf or approxi mately 97% of Folildimgsideachsoumy pul at
database were divided into singéamily residential buildings and mobile homes.

County property tax appraiser (CPTA) databases contain large quantities of buildimgairon,

and it was necessary to extract those characteristics related to the vulnerability of buildings to
wind. The available building characteristics vary from county to county and include some
combination of the following: exterior wall material, énior wall material, roof shape, roof cover,
floor covering, foundation, opening protection, year built, number of stories, area per floor, area
per unit, and geometry of the building. The parameters important for modeling are roof cover,
roof shape, extesr wall material, number of stories, year built, and building area. For each of
these categories, the authors extracted statistical information. The dependency between critical
building characteristics was also investigated. For example, it was founddhahape and area

of the building are strongly dependent on the year built. The survey statistics were calculated for
different eras to account for the correlation between various factors and year built.

Figure?. Typicalsinglefamily homes (Google Earth).
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